Определить напряжение между двумя точками электрической цепи. Ток, напряжение, электродвижущая сила, мощность

ЭЛЕКТРИЧЕСКИЕ ЦЕПИ , совокупности соединенных определенным образом элементов и устройств, образующих путь для прохождения электрического тока. Теория цепей - раздел теоретической электротехники, в котором рассматриваются математические методы вычисления электрических величин. Многие из этих электрических величин определяются параметрами компонентов, составляющих цепи, - сопротивлениями резисторов, емкостями конденсаторов, индуктивностями катушек индуктивности, токами и напряжениями источников электрической энергии. Электрические цепи подразделяются на цепи постоянного тока и цепи переменного тока. ОСНОВНЫЕ ПОНЯТИЯ Ток . Сила электрического тока в проводе определяется как электрический заряд, проходящий через поперечное сечение провода за единицу времени. Заряд измеряется в кулонах; один кулон в секунду равен одному амперу.

Направлением тока далее будем считать направление, в котором двигались бы положительные заряды. На самом деле ток в большинстве случаев создается движением электронов, которые, будучи заряжены отрицательно, движутся в направлении, противоположном принятому за направление тока. Ток неизменяющейся силы обозначается через

I , а мгновенное значение изменяющегося тока - через i . Потенциал . Если для перемещения заряда между двумя точками необходимо затратить энергию или если при перемещении заряда между двумя точками заряд приобретает энергию, то говорят, что в этих точках имеется разность потенциалов. Энергия необходима для перемещения заряда от более низкого потенциала к более высокому. На схемах рядом с точкой более высокого потенциала ставится знак +, а рядом с точкой более низкого - знак - . Батарея или генератор электрического тока - это устройство, которое сообщает энергию зарядам. Источник тока перемещает положительные заряды от меньшего потенциала к большему за счет химической энергии. Неизменяющаяся разность потенциалов обозначается через V , а мгновенное значение изменяющейся разности потенциалов - через e . Разность потенциалов на зажимах батареи или генератора называется электродвижущей силой (ЭДС) и обозначается через E g , если она не изменяется, и через e g , если она переменна. Разность потенциалов в двух точках a и b обозначается через V ab . Разность потенциалов и ЭДС измеряются в вольтах. ТЕОРИЯ ЦЕПЕЙ Цепь может представлять собой любую комбинацию батарей и генераторов, а также резистивных и реактивных элементов. Батареи и генераторы в теории цепей рассматриваются либо как источники напряжения (ЭДС) с определенным внутренним сопротивлением, либо как источники тока с определенной внутренней проводимостью. Цепь, не содержащая источников тока и напряжения, называется пассивной, а цепь с источниками тока или напряжения - активной. Целью анализа цепи является определение полного сопротивления (импеданса) между любыми двумя точками цепи и нахождение математического выражения для тока через любой элемент цепи или для напряжения на любом элементе цепи при любых заданных ЭДС источников напряжения и любых токах источников тока. Всякий замкнутый путь тока в цепи называется контуром. Узлом цепи называется всякая ее точка, в которой соединяются три или большее число ветвей цепи.

На рис. 1 представлена цепь с двумя контурами. Стрелками

I 1 , I 2 и I 3 показано предполагаемое направление токов в импедансах этих контуров. От токов не требуется, чтобы они были в фазе; но в простейшем случае, когда импедансы - сопротивления, решение уравнений относительно любого тока I будет отрицательным, если принято неправильное направление тока. Поэтому предполагаемое направление токов может быть любым. Принятые положительные и отрицательные потенциалы, соответствующие ЭДС источников напряжения, указаны знаками + и - . Следует иметь в виду, что напряжение на импедансе понижается в направлении тока и повышается в противоположном направлении. Это тоже указано знаками + и - . Законы Кирхгофа . Зависимости между токами и напряжениями в электрической цепи устанавливаются на основании двух законов, сформулированных Г.Кирхгофом (1847): 1) алгебраическая сумма ЭДС источников напряжения и напряжений на элементах контура равна нулю и 2) алгебраическая сумма токов в каждом узле равна нулю.

В первом законе Кирхгофа находит выражение то очевидное обстоятельство, что при полном обходе контура мы возвращаемся в исходную точку с тем же самым потенциалом. Второй закон Кирхгофа есть констатация того, что в узловой точке ток не может ни исчезать, ни возникать. Ток к узлу считается положительным, а ток от узла - отрицательным.

Применив закон Кирхгофа для напряжений к двум контурам цепи, представленной на рис. 1 (и воспользовавшись законом Ома - выражением

V Z = IZ для напряжения на импедансе Z , создаваемого током I ), мы получим для контура 1 уравнение а для контура 2 - уравнение Применив закон Кирхгофа для токов к любому из узлов, получаем Если ЭДС (E g ) 1 и (E g ) 2 , а также импедансы известны, то из уравнений (1)-(3) можно вычислить все три тока. Контурные токи . В случае цепей с большим числом контуров метод контурных токов позволяет не записывать уравнения для токов, следующие из второго закона Кирхгофа. Для этого в той же цепи, что и раньше, представленной на рис. 2, принимают один ток для каждого контура. Как и прежде, направление токов выбирается произвольно. Закон Кирхгофа для напряжений дает для контура 1 а для контура 2 - В напряжение на импедансе Z 3 , рассматриваемом как элемент одного контура, входит напряжение, обусловленное током другого контура: в уравнении (4) имеется слагаемое (- Z 3 I 2 ), а в уравнении (5) - слагаемое (- Z 3 I 1 ). Уравнения (4) и (5) можно было бы получить из уравнений (1)-(3), подставив в первые два ток I 2 из третьего, но метод контурных токов приводит к тому же результату всего за два шага. Принцип суперпозиции . Предположим, что в активной цепи в разных ее точках имеется несколько источников напряжения или тока. Согласно принципу суперпозиции, ток, создаваемый любым источником в любом элементе цепи, не зависит от других источников. Следовательно, полный ток в любом элементе равен сумме токов, создаваемых всеми источниками по отдельности. При вычислении тока, создаваемого каждым из источников напряжения или тока, другие источники напряжения заменяются их внутренними импедансами, а другие источники тока - их внутренними проводимостями. Теорема Тевенена . Эта теорема, называемая также теоремой об эквивалентном источнике, утверждает, что любую активную цепь с двумя полюсами (зажимами) в установившемся режиме можно заменить источником напряжения с некоторым внутренним импедансом. ЭДС эквивалентного источника напряжения равна напряжению на полюсах ненагруженного заменяемого двухполюсника, а внутренний импеданс источника равен импедансу этого двухполюсника при ЭДС источников напряжения в нем, равных нулю.

Рассмотрим, например, цепь, представленную на рис. 3. Эта активная цепь заменяется источником напряжения, ЭДС

E g ў и внутренний импеданс Z g ў которого таковы: ЭДС E g ў есть напряжение на разомкнутых полюсах a и b , равное напряжению на Z 1 . Внутренний импеданс Z g ў равен импедансу между точками a и b исходного двухполюсника, т.е. импедансу последовательного соединения Z 2 с параллельно соединенными Z 1 и Z g . Для любого элемента, присоединенного к полюсам a и b обоих двухполюсников, токи и напряжения будут одинаковы. Теорема Нортона . Эта теорема, аналогичная теореме Тевенена, утверждает, что любой активный двухполюсник можно заменить эквивалентным источником тока с некоторой внутренней проводимостью. Ток эквивалентного источника равен току короткого замыкания между полюсами a и b исходного двухполюсника. Внутренняя проводимость эквивалентного источника тока определяется тем же, что и в теореме Тевенена, импедансом между полюсами двухполюсника, присоединенным параллельно источнику. На рис. 4

а импеданс Z g ў дается выражением (7). Если полюса a и b исходного двухполюсника замкнуть накоротко, то источник напряжения с ЭДС E g будет нагружен импедансом Z g и параллельным соединением импедансов Z 1 и Z 2 , откуда и следует выражение (8). Преобразование Т-П . Часто требуется заменить Т-образный четырехполюсник П-образным или наоборот. Чтобы два таких четырехполюсника (рис. 5) были эквивалентны, должны быть одинаковы токи и напряжения между их полюсами при прочих равных условиях за пределами полюсов. Параметры цепи для преобразования Т ® П таковы: Формулы для преобразования П ® Т имеют вид

Переходные процессы . Переходным называется процесс изменения электрических величин в цепи при ее переходе из одного установившегося режима в другой. При анализе переходных процессов ток, напряжение или заряд в некоторой точке цепи обычно представляют в виде функции времени. Рассмотрим цепь с источником напряжения (батареей с ЭДС E g ), представленную на рис. 6. После замыкания ключа сумма мгновенных значений напряжения на резисторе и конденсаторе должна быть равна E g : или, иначе, Поскольку i = dq / dt , уравнение (10) можно переписать в виде дифференциального уравнения решение которого таково: Соответствующий ток равен: где e - основание натуральных логарифмов. На рис. 7 представлены графики изменения заряда конденсатора q и тока i во времени. В начальный момент (t = 0 ), когда ключ только замкнут, заряд конденсатора равен нулю, а ток равен E g / R , как если бы конденсатора в цепи не было. Затем заряд конденсатора нарастает по экспоненте. Обусловленное зарядом напряжение на конденсаторе направлено навстречу ЭДС источника, и ток по экспоненте убывает до нуля. В момент замыкания ключа конденсатор эквивалентен короткому замыканию, а по истечении достаточно длительного времени (при t = Ґ ) - разрыву цепи.

Постоянная времени

RC -цепи определяется как время, за которое заряд достигает значения, на 1/ e (36,8%) отличающегося от конечного значения. Она дается выражением Аналогичные рассуждения можно провести для RL -цепи, представленной на рис. 8. Сумма мгновенных напряжений e R и e L должна быть равна E g . Это условие записывается в виде дифференциального уравнения решение которого таково: На рис. 9 решение (11) представлено в графической форме. Сразу же после замыкания ключа (при t = 0 ) ток начинает быстро увеличиваться, наводя большое напряжение на катушке индуктивности. Наведенное напряжение противодействует изменению тока. По мере того как нарастание тока замедляется, наведенное напряжение уменьшается. При t = Ґ ток не меняется, и наведенное напряжение равно нулю. Таким образом, в конце концов ток принимает значение, которое он имел бы, если бы в цепи не было катушки индуктивности. (При t = 0 катушка индуктивности эквивалентна разрыву цепи, а по истечении достаточно длительного времени - короткому замыканию.)

Постоянная времени

RL -цепи определяется как время, за которое ток достигает значения, на 1/ e отличающегося от конечного значения. Она дается выражением ПРИМЕНЕНИЕ ТЕОРИИ ЦЕПЕЙ Мост Уитстона . Мост Уитстона - это схема электрической цепи для точного измерения сопротивлений на постоянном токе. Соответствующая принципиальная схема представлена на рис. 10, где измеряемое сопротивление обозначено через R x . Остальные сопротивления известны, и их можно изменять. Если известные сопротивления подобрать так, чтобы высокочувствительный амперметр A показывал отсутствие тока, это означало бы, что потенциал точек b и c одинаков. В таком случае, обозначив ток через резисторы R 1 и R 3 символом I 1 , а ток через R 2 и R x - символом I 2 , можно записать Поделив равенство (13) на (12) и решив полученное уравнение относительно R x , находим Схемой моста Уитстона можно пользоваться и для измерения полных сопротивлений (импедансов) на переменном токе. Для этого нужно вместо батареи взять источник напряжения переменного тока, а амперметр A заменить детектором переменного тока. Анализ схемы проводится аналогично, но в комплексных обозначениях. Интегрирующая и дифференцирующая цепи . Дифференцирующей будет при некоторых приближенно выполняющихся условиях цепь рис. 6, если в ней источником напряжения является генератор напряжения e (t ), зависящего от времени. Тогда уравнение (10) будет иметь вид e R пропорциональна производной входного напряжения. Если постоянная времени велика, а напряжение снимается с конденсатора, то эта цепь будет интегрирующей. В таком случае в уравнении (14) можно пренебречь величиной q / C по сравнению с iR , так что или . Поскольку C = dq / dt , а q = 8 idt , напряжение на конденсаторе можно записать в виде т.е. напряжение e C пропорционально интегралу входного напряжения. Фильтры . Фильтры - это электрические цепи, пропускающие лишь определенные частоты и задерживающие все остальные. Идеальный фильтр верхних частот имеет полосу пропускания выше заданной «частоты среза» и полосу задерживания для более низких частот. Полосовой фильтр имеет полосу пропускания, расположенную между двумя заданными частотами среза. Общая схема включения фильтра показана на рис. 11. В качестве примера на рис. 12, a представлен фильтр нижних частот, включенный между генератором и нагрузкой R . На низких частотах импеданс катушек индуктивности мал, а конденсатора - велик, и почти весь ток проходит через нагрузку R . На высоких частотах импеданс катушек индуктивности велик, из-за чего снижается ток, а импеданс конденсатора мал, так что он как бы замыкает накоротко цепь малого тока, проходящего через первую катушку индуктивности. Справа на рис. 12, a представлен график зависимости отношения E 2 /(E g /2) от частоты, деленной на частоту среза. Как нетрудно видеть, в области высоких частот сигнал быстро затухает. Однако реальная частотная характеристика заметно отличается от характеристики (с резким частотным срезом) идеального фильтра нижних частот. На рис. 12, б и в представлены схемы полосового фильтра и фильтра верхних частот с соответствующими частотными характеристиками. ЛИТЕРАТУРА Зевеке Г.В. и др. Основы теории цепей . М., 1975
Татур Г.А. Основы теории электрических цепей . М., 1980
Бессонов Л.А. Теоретические основы электротехники: электрические цепи . М., 1984

ПРЕДИСЛОВИЕ

Эта книга является учебным пособием по курсу «Основы теории цепей» (ОТЦ) для студентов радиотехнических специальностей.

Роль теории цепей в формировании профессионального статуса радиоинженера исключительно велика. Методы теории цепей пронизывают все специальные радиотехнические дисциплины. Теория цепей опирается на фундаментальные положения и дисциплины: раздела «Электричество и магнетизм», алгебры комплексных чисел, матричного исчисления, теории функций комплексного переменного и теории дифференциальных уравнений.

Курс ОТЦ занимается вопросами расчёта и анализа электрических процессов в электрических цепях.

Курс содержит материал по ряду тем:

основные понятия электрических цепей;

линейные цепи при гармоническом воздействии;

частотные характеристики и резонансные явления в цепях;

переходные процессы в линейных электрических цепях;

основы теории четырехполюсников;

цепи с распределенными параметрами.

За последние годы число часов на изучение лекционного курса уменьшено. Поэтому теоретические вопросы по методам расчетов цепей, таких как Метод токов ветвей, Метод контурных токов, Метод узловых потенциалов вынесены на практические занятия. По практическим занятиям ОТЦ издано учебное пособие в издательстве КГТУ им. А.Н.Туполева (КАИ) .

Таким образом, для изучения теоретического курса ОТЦ рекомендуется пользоваться конспектом лекций и учебным пособием по практическим занятиям.

Серьезная работа над курсом обязательно должна сопровождаться решением задач разного уровня сложности. В пособии рассматриваются примеры решения задач по всем темам курса и условия задач для самостоятельного решения.

Для полного изучения курса ОТЦ по программе предусмотрено решение курсовой работы.



ОСНОВНЫЕ ПОНЯТИЯ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ

Ток, напряжение, электродвижущая сила, мощность

Электрический ток i(t) (в дальнейшем для краткости просто ток) в проводнике есть упорядоченное движение электрических зарядов под воздействием электрического поля. Количественно ток в каждый момент времени характеризуется скалярной величиной i = i(t) называемой мгновенным значением тока (1.1)

(1.1)

где Δq – электрический заряд, прошедший за время Δt через поперечное сечение проводника.

В любом проводнике упорядоченное перемещение носителей заряда (т.е. ток) происходит в одном из двух возможных направлений. Поэтому ток также имеет одно из двух направлений. Выбор условно-положительного направления тока при расчетах может быть произвольным . Это направление показывают стрелкой (рис. 1.1). Если в результате расчетов, выполненных при выбранном направлении, ток получится со знаком плюс, то его направление, т.е. направление перемещения положительных зарядов, совпадает с направлением, выбранном за положительное; если ток будет отрицательным, то его направление противоположно условно положительному.


Электрическое напряжение u(t) (1.2) (в дальнейшем просто напряжение) между двумя точками цепи определяется количеством энергии, затрачиваемой на перемещение единичного заряда из одной точки в другую.

(1.2)

где W – энергия электрического поля

Напряжение между точками а и б (рис. 1.1) совпадает по значению с разностью потенциалов между этими точками

u аб = φ а – φ б, (1.3)

где φ а иφ б – потенциалы точек а иб (рис. 1.1.

Значение напряжения в любой заданный момент времени t называется мгновенным и обозначается u= u(t) . Являясь скалярной величиной, u(t) может принимать как положительное так и отрицательное значения. Для однозначного определения знака напряжения положительное направление выбирают в сторону от точки с более высоким потенциалом, т.е. «+», к точке с меньшим потенциалом, т.е. «–» (рис. 1.1). При этом положительные направления отсчета напряжения и тока будут между собой согласованы (совпадать). Применительно к напряжению на участке, по которому протекает ток, часто используют термин «падение напряжения ».

Электродвижущая сила. Источники электрической энергии характеризуются электродвижущей силой (ЭДС), которая может быть определена как работа сторонних сил, затрачиваемая на перемещение единичного положительного заряда внутри источника от зажима с меньшим потенциалом к зажиму с большим потенциалом.

Независимо от природы сторонних сил ЭДС источника численно равна напряжению между зажимами источника энергии при отсутствии в нем тока.

Электрическая энергия W (1.4), затраченная на перемещение единичного положительного заряда между двумя точками участка цепи с напряжением u к моменту времени t согласно (1.1) и (1.2) определится уравнением

(1.4)

где принято W = 0 при t = – ∞.

Если для любого момента времени t при любом законе изменения u или i во времени энергия W(t) > 0, то данный участок цепи является потребителем энергии и называется пассивным. Если для какого-то момента времени энергия W(t)< 0, то данный участок цепи содержит источники энергии и называется активным. По этим признакам цепи делятся на два класса – пассивные и активные цепи.

Производная энергии по времени определяет мгновенную мощность p(t) (1.5), потребляемую элементами, входящими в участок цепи:

(1.5)

Если p> 0, то в данный момент времени участок цепи получает (заряжается ) электрическую энергию от внешней цепи. При p < 0 участок цепи отдает (разряжается ) электрическую энергию во внешнюю цепь.

ЭЛЕКТРИЧЕСКАЯ ЦЕПЬ, СХЕМА

Электрическая цепь – это совокупность устройств, элементов, приборов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью ЭДС, тока, напряжения, магнитного и электрического полей.Электрическую цепь можно разделить на две части (рис. 1.2, а): источники электрической энергии и приемники. Источники – это устройства, создающие (генерирующие) токи и напряжения, которые называют воздействиями . Приемниками нагрузкой называют устройства, потребляющие или преобразующие электрическую энергию в другие виды энергии (тепловую, световую и др.). Нагрузкой может служить группа элементов, соединенных между собой электрическим способом.




Как воздействия, так и нагрузки имеют внешние зажимы, называемые также полюсами (рис1.2, а ).Различают двухполюсники и многополюсники (трехполюсники, четырехполюсники, N-полюсники) (рис. 1.2, б ).

Электрическаяцепь может быть представлена электрической схемой.

Схема электрической цепи (схема )– это условное графическое изображение электрической цепи. В радиотехнике встречаются различные типы схем: структурные, принципиальные и схемы замещения.

а) Структурные (функциональные) схемы – это условное изображение реальной цепи, в которой показаны ее важнейшие функциональные части. Отдельные функциональные части цепи на структурной схеме могут изображаться в виде прямоугольников или с помощью других графических обозначений (рис.1.3.).




б) Принципиальная схема цепи– это условное изображение реальной цепи, на котором с помощью условных обозначений показаны все элементы цепи и соединения между ними. Каждому реальному элементу цепи (резистору, конденсатору, транзистору и др.) соответствует условное изображение и буквенное обозначение (рис. 1.4).

в) Схема замещения или эквивалентная схема – это графическое изображение моделирующей цепи, т.е. цепи, составленной из идеализированных элементов, замещающей исследуемую реальную цепь. Схема замещения может быть получена из принципиальной схемы путем замены каждого реального элемента его схемой замещения.

Эта задача при расчете электрических цепей встречается очень часто. Пусть, например, в цепи на рис. 2.1 требуется найти напряжение между точками m и n.

Прежде всего необходимо показать на схеме или мысленно представить стрелку этого напряжения. Её направление определяется порядком следования индексов у буквы . Для напряжения она направлена отточки m к точке n . Если мы меняем местами индексы у буквы , то следует изменить и направление стрелки на схеме. При этом при расчете меняется знак полученного напряжения, так как .

Дальше записываются уравнения по второму закону Кирхгофа для любого контура, включающего в себя эту стрелку, как было сделано при расчете напряжений и . Так, для контура m 31nm при обходе его по часовой стрелке

При соответствующем навыке последняя формула может быть записана сразу, без составления уравнения второго закона Кирхгофа.

В указанном контуре напряжение складывается из трех напряжений:

Порядок индексов у букв U соответствует порядку, в котором мы проходим участок электрической цепи, идя от точки m к точке n по элементам , и .

Теперь находим значение каждого слагаемого в последнем уравнении.

Величина , определяющая напряжение между точками m и 3, представляет собой падение напряжения на сопротивлении , которое мы должны взять со знаком минус, так как от точки m к точке 3 мы идем против тока :

Аналогично

Здесь в правой части уравнения стоит плюс, так как мысленная стрелка напряжения и ток направлены в одну сторону.

Третье слагаемое представляет собой напряжение на зажимах источника. Если внутреннее сопротивление последнего равно нулю, то это напряжение по величине равно ЭДС, а знак его зависит от взаимного направления стрелок напряжения и ЭДС (рис. 7.1).


Рассмотрим рис. 7.1.

При указанной на схеме полярности зажимов источника потенциал точки b выше потенциала точки a на величину ЭДС:

Поэтому при одинаковых направлениях стрелок и (рис. 7.1, а )

Если направления стрелок и противоположны друг другу (рис. 7.1, б ), то

.

С учетом сказанного напряжение на участке 1n (см. рис. 2.1) равно

Подставляя найденные значения напряжений на участках в формулу (7.2), приходим к выражению (7.1).

То же самое напряжение, определяемое по участку m 2n , будет равно

Разумеется, вычисление одного и того же напряжения по двум различным формулам должно привести к одинаковым результатам.

8. Построение графиков

8.1. Общие требования к оформлению графиков. Зависимость мощности от тока

Правила построения графиков рассмотрим на примере зависимости мощности Р 1, выделяющейся в сопротивлении первой ветви, от тока I 1 в этой ветви. Эта зависимость определяется уравнением баланса мощностей в схеме рис. 6.1, в :

Так как , то

Это – уравнение параболы со смещенной вершиной и направленными вниз ветвями (рис. 8.1).

Значения тока, при которых парабола пересекает горизонтальную ось, находятся из уравнения

и соответственно равны

и .

По смыслу – это ток, протекающий в схеме рис. 6.1, в при закороченном сопротивлении . При токе, равном половине этого значения, мощность максимальна:

Предположим, что параметры цепи на рис. 6.1, в имеют следующие численные значения:

72,4 В; = 130 В; = 43,6 Ом.

Прежде всего находим максимальные значения абсциссы и ординаты, которые будут определять размеры графика. В нашем примере – это значения и :

;

Исходя из этих величин и предполагаемых размеров графика, выбираем масштаб, который указываем на каждой оси графика в виде равномерной шкалы.

В одной единице длины (сантиметре, миллиметре) может содержаться m × 10 n именованных единиц. Здесь n – целое число, положительное или отрицательное, а для m рекомендуются числа 1, 2, 5.

Положительные значения величин откладываются вправо по оси абсцисс и вверх по оси ординат.

В конце каждой оси ставится буквенное обозначение откладываемой величины и через запятую – ее единица измерения.

Если график строится на белой (нелинованной) бумаге, то чертится масштабная сетка.

Данные для построения графика рассчитываем по формуле (8.1) и сводим их в таблицу (табл. 8.1).

Таблица 8.1

Данные для построения графика

Абсциссы точек, выбираемых для построения графика, желательно располагать по оси равномерно. Но вблизи характерных областей кривой (в нашем случае у вершины параболы) точки можно взять чаще. В таблицу внесены также значения максимальной мощности и тока, которому эта мощность соответствует. При построении графика числа из таблицы на осях не показываются (рис. 8.2).



Статьи по теме