Явление электродвижущей силы. Практическое применение электромагнитной индукции

Мы уже знаем, что электрический ток, двигаясь по проводнику, создает вокруг него магнитное поле . На основе этого явления человек изобрел и широко применяет самые разнообразные электромагниты . Но возникает вопрос: если электрические заряды, двигаясь, вызывают возникновение магнитного поля, а не работает ли это и наоборот?

То есть, может ли магнитное поле явиться причиной возникновения электрического тока в проводнике? В 1831 году Майкл Фарадей установил, что в замкнутой проводящей электрической цепи при изменении магнитного поля возникает электрический ток . Такой ток назвали индукционным током, а явление возникновения тока в замкнутом проводящем контуре при изменении магнитного поля, пронизывающего этот контур, носит название электромагнитной индукции.

Явление электромагнитной индукции

Само название «электромагнитная» состоит из двух частей: «электро» и «магнитная». Электрические и магнитные явления неразрывно связаны друг с другом. И если электрические заряды, двигаясь, изменяют магнитное поле вокруг себя, то и магнитное поле, изменяясь, поневоле заставит перемещаться электрические заряды, образуя электрический ток.

При этом именно изменяющееся магнитного поля вызывает возникновение электрического тока. Постоянное магнитное поле не вызовет движение электрических зарядов, а соответственно, и индукционный ток не образуется. Более детальное рассмотрение явления электромагнитной индукции , вывод формул и закона электромагнитной индукции относится к курсу девятого класса.

Применение электромагнитной индукции

В данной же статье мы поговорим о применении электромагнитной индукции. На использовании законов электромагнитной индукции основано действие многих двигателей и генераторов тока. Принцип их работы понять довольно просто.

Изменение магнитного поля можно вызвать, например, перемещением магнита. Поэтому, если каким-либо сторонним воздействием передвигать магнит внутри замкнутой цепи, то в этой цепи возникнет ток. Так можно создать генератор тока.

Если же наоборот, пустить ток от стороннего источника по цепи, то находящийся внутри цепи магнит начнет двигаться под воздействием магнитного поля, образованного электрическим током. Таким образом можно собрать электродвигатель.

Описанными выше генераторами тока преобразовывают механическую энергию в электрическую на электростанциях. Механическая энергия это энергия угля, дизельного топлива, ветра, воды и так далее. Электричество поступает по проводам к потребителям и там обратным образом преобразовывается в механическую в электродвигателях.

Электродвигатели пылесосов, фенов, миксеров, кулеров, электромясорубок и прочих многочисленных приборов, используемых нами ежедневно, основаны на использовании электромагнитной индукции и магнитных сил. Об использовании в промышленности этих же явлений и говорить не приходится, понятно, что оно повсеместно.

Словом «индукция» в русском языке обозначает процессы возбуждения, наведения, создания чего-либо. В электротехнике этот термин применяется уже более двух столетий.

После знакомства с публикациями 1821 года, описывающими опыты датского ученого Эрстеда об отклонениях магнитной стрелки около проводника с электрическим током, Майкл Фарадей поставил перед собой задачу: преобразовать магнетизм в электричество .

Через 10 лет исследований он сформулировал основной закон электромагнитной индукции, объяснив, что внутри любого замкнутого контура наводится электродвижущая сила. Ее величина определяется скоростью изменения магнитного потока, пронизывающего рассматриваемый контур, но взятую со знаком минус.

Передача электромагнитных волн на расстояние

Первая догадка, которая осенила мозг ученого, не увенчалась практическим успехом.



Он расположил рядом два замкнутых проводника. Около одного установил магнитную стрелку в качестве индикатора проходящего тока, а в другой провод подал импульс от мощного гальванического источника того времени: вольтова столба.

Исследователь предполагал, что при импульсе тока в первом контуре изменяющееся в нем магнитное поле наведет во втором проводнике ток, который отклонит магнитную стрелку. Но, результат оказался отрицательным - индикатор не сработал. Вернее, ему не хватило чувствительности.

Мозг ученого предвидел создание и передачу электромагнитных волн на расстояние, которые сейчас используются в радиовещании, телевидении, беспроводном управлении, Wi-Fi технологиях и подобных устройствах. Его просто подвела несовершенная элементная база измерительных устройств того времени.



Производство электроэнергии

После проведения неудачного опыта Michael Faraday видоизменил условия эксперимента.



Для опыта Фарадей использовал две катушки с замкнутыми контурами. В первый контур он подавал электрический ток от источника, а во втором наблюдал за появлением ЭДС. Проходящий по виткам обмотки №1 ток создавал вокруг катушки магнитный поток, пронизывающий обмотку №2 и образовывающий в ней электродвижущую силу.

Во время эксперимента Фарадей:

  • включал импульсом подачу напряжения в цепь при неподвижных катушках;
  • при поданном токе вводил в нижнюю катушку верхнюю;
  • закреплял стационарно обмотку №1 и вводил в нее обмотку №2;
  • изменял скорость перемещения катушек относительно друг друга.

Во всех этих случаях он наблюдал проявление ЭДС индукции во второй катушке. И лишь при прохождении постоянного тока по обмотке №1 и неподвижных катушках наведения электродвижущей силы не было.

Ученый определил, что наводимая во второй катушке ЭДС зависит от скорости, с которой меняется магнитный поток. Она пропорциональна его величине.

Эта же закономерность полностью проявляется при прохождении замкнутого витка сквозь Под действием ЭДС в проводе образуется электрический ток.

Магнитный поток в рассматриваемом случае изменяется в контуре Sк, созданном замкнутой цепью.



Таким способом созданная Фарадеем разработка позволила поместить в магнитное поле вращающуюся токопроводящую рамку.



Ее затем сделали из большого количества витков, закрепили в подшипниках вращения. По концам обмотки вмонтировали токосъемные кольца и щетки, скользящие по ним, а через выводы на корпусе подключили нагрузку. Получился современный генератор переменного тока.

Его более простая конструкция создалась тогда, когда обмотку закрепили на стационарном корпусе, а вращать стали магнитную систему. В этом случае способ образования токов за счет никак не нарушался.

Принцип работы электродвигателей

Закон электромагнитной индукции, который обсновал Michael Faraday, позволил создать различные конструкции электрических двигателей. Они имеют сходное устройство с генераторами: подвижный ротор и статор, которые взаимодействуют между собой за счет вращающихся электромагнитных полей.



Трансформация электроэнергии

Майкл Фарадей определил возникновение наведенной электродвижущей силы и индукционного тока в рядом расположенной обмотке при изменении магнитного поля в соседней катушке.



Ток внутри близлежащей обмотки наводится при коммутациях цепи выключателя в катушке 1 и всегда присутствует во время работы генератора на обмотку 3.

На этом свойстве, получившем название взаимоиндукции , основана работа всех современных трансформаторных устройств.



У них для улучшения прохождения магнитного потока изолированные обмотки надеты на общий сердечник, обладающий минимальным магнитным сопротивлением. Его изготавливают из специальных сортов стали и формируют наборными тонкими листами в виде секций определенной формы, называют магнитопроводом.

Трансформаторы передают за счет взаимоиндукции энергию переменного электромагнитного поля из одной обмотки в другую так, что при этом происходит изменение, трансформация величины напряжения на входных и выходных его клеммах.

Соотношение количества витков в обмотках определяет коэффициент трансформации , а толщина провода, конструкция и объем материала сердечника - величину пропускаемой мощности, рабочий ток.

Работа индуктивностей

Проявление электромагнитной индукции наблюдается в катушке во время изменения в ней величины протекающего тока. Этот процесс получил название самоиндукции .



При включении выключателя на приведенной схеме индукционный ток видоизменяет характер прямолинейного нарастания рабочего тока в цепи, как и во время отключения.

Когда же к проводнику, смотанному в катушку, прикладывается не постоянное, а переменное напряжение, то через нее протекает уменьшенное индуктивным сопротивлением значение тока. Энергия самоиндукции сдвигает по фазе ток относительно приложенного напряжения.

Это явление используется в дросселях, которые предназначены для уменьшения больших токов, возникающих при определенных условиях работы оборудования. Такие устройства, в частности, применяются .



Конструктивная особенность магнитопровода у дросселя - разрез пластин, который создается для дополнительного повышения магнитного сопротивления магнитному потоку за счет образования воздушного зазора.

Дроссели с разрезным и регулируемым положением магнитопровода используются во многих радиотехнических и электрических устройствах. Довольно часто их можно встретить в конструкциях сварочных трансформаторов. Ими уменьшают величину электрической дуги, пропускаемой через электрод, до оптимального значения.

Индукционные печи

Явление электромагнитной индукции проявляется не только в проводах и обмотках, но и внутри любых массивных металлических предметов. Наводимые в них токи принято называть вихревыми. При работе трансформаторов и дросселей они вызывают нагрев магнитопровода и всей конструкции.

Для предотвращения этого явления сердечники изготавливают из тонких металлических листов и изолируют между собой слоем лака, препятствующим прохождению наведенных токов.

В обогревательных конструкциях вихревые токи не ограничивают, а создают для их прохождения наиболее благоприятные условия. широко применяются в промышленном производстве для создания высоких температур.

Электротехнические измерительные устройства

В энергетике продолжает работать большой класс индукционных приборов. Электрические счетчики с вращающимся алюминиевым диском, аналогичные конструкции реле мощности, успокоительные системы стрелочных измерительных приборов функционируют на основе принципа электромагнитной индукции.

Газовые магнитные генераторы

Если вместо замкнутой рамки в поле магнита перемещать токопроводящий газ, жидкость или плазму, то заряды электричества под действием магнитных силовых линий станут отклоняться в строго определенных направлениях, формируя электрический ток. Его магнитное поле на смонтированных электродных контактных пластинах наводит электродвижущую силу. Под ее действием в подключенной цепи к МГД-генератору создается электрический ток.

Так закон электромагнитной индукции проявляется в МГД-генераторах.



Здесь нет таких сложных вращающихся частей, как ротор. Это упрощает конструкцию, позволяет значительно повышать температуру рабочей среды, а, заодно и эффективность выработки электроэнергии. МГД-генераторы работают в качестве резервных либо аварийных источников, способных вырабатывать значительные потоки электроэнергии в малые промежутки времени.

Таким образом, закон электромагнитной индукции, обоснованный Майклом Фарадеем в свое время продолжает оставаться актуальным в наши дни.

Явление электромагнитной индукции используется, прежде всего, для преобразования механической энергии в энергию электрического тока. Для этой цели применяются генераторы переменного тока (индукционные генераторы).

Простейшим генератором переменного тока является проволочная рамка, вращающаяся равномерно с угловой скоростью w=const в однородном магнитном поле с индукцией В (рис. 4.5). Поток магнитной индукции, пронизывающий рамку площадью S , равен

При равномерном вращении рамки угол поворота , где - частота вращения. Тогда


По закону электромагнитной при индукции ЭДС, наводимая в рамке ее вращении,



Если к зажимам рамки с помощью щеточно-контактного аппарата подключить нагрузку (потребителя электроэнергии), то через нее потечет переменный ток.
Для промышленного производства электроэнергии на электрических станциях используются синхронные генераторы (турбогенераторы, если станция тепловая или атомная, и гидрогенераторы, если станция гидравлическая). Неподвижная часть синхронного генератора называется статором , а вращающаяся – ротором (рис. 4.6). Ротор генератора имеет обмотку постоянного тока (обмотку возбуждения) и является мощным электромагнитом. Постоянный ток, подаваемый на обмотку возбуждения через щеточно-контактный аппарат, намагничивает ротор, и при этом образуется электромагнит с северным и южным полюсами.
На статоре генератора расположены три обмотки переменного тока, которые смещены одна относительно другой на 120 0 и соединены между собой по определенной схеме включения.
При вращении возбужденного ротора с помощью паровой или гидравлической турбины его полюсы проходят под обмотками статора, и в них индуцируется изменяющаяся по гармоническому закону электродвижущая сила. Далее генератор по определенной схеме электрической сети соединяется с узлами потребления электроэнергии.
Если передавать электроэнергию от генераторов станций к потребителям по линиям электропередачи непосредственно (на генераторном напряжении, которое относительно невелико), то в сети будут происходить большие потери энергии и напряжения (обратите внимание на соотношения , ). Следовательно, для экономичной транспортировки электроэнергии необходимо уменьшить силу тока. Но так как передаваемая мощность при этом остается неизменной, напряжение должно увеличиться во столько же раз, во сколько раз уменьшается сила тока.
У потребителя электроэнергии, в свою очередь, напряжение необходимо понизить до требуемого уровня. Электрические аппараты, в которых напряжение увеличивается или уменьшается в заданное количество раз, называются трансформаторами . Работа трансформатора также основана на законе электромагнитной индукции.


Рассмотрим принцип работы двухобмоточного трансформатора (рис. 4.7). При прохождении переменного тока по первичной обмотке вокруг нее возникает переменное магнитное поле с индукцией В , поток которого также переменный . Сердечник трансформатора служит для направления магнитного потока (магнитное сопротивление воздуха велико). Переменный магнитный поток, замыкающийся по сердечнику, индуцирует в каждой из обмоток переменную ЭДС:

Тогда У мощных трансформаторов сопротивления катушек очень малы, поэтому напряжения на зажимах первичной и вторичной обмоток приблизительно равны ЭДС:

где k – коэффициент трансформации. При k1 () трансформатор является понижающим .
При подключении ко вторичной обмотке трансформатора нагрузки, в ней потечет ток . При увеличении потребления электроэнергии по закону сохранения энергии должна увеличиться энергия, отдаваемая генераторами станции, т.е.

откуда

Это означает, что, повышая с помощью трансформатора напряжение в k раз, удается во столько же раз уменьшить силу тока в цепи (при этом джоулевы потери уменьшаются в k 2 раз).

Краткие выводы

  1. Явление возникновения ЭДС в замкнутом проводящем контуре, находящемся в переменном магнитном поле называется электромагнитной индукцией.

2. Согласно закону электромагнитной индукции ЭДС индукции в замкнутом проводящем контуре численно равна и противоположна по знаку скорости изменения магнитного потока сквозь поверхность, ограниченную этим контуром:

Знак минус отражает правило Ленца: при всяком изменении магнитного потока сквозь замкнутый проводящий контур в последнем возникает индукционный ток такого направления, что его магнитное поле противодействует изменению внешнего магнитного потока.

Сущность явления электромагнитной индукции заключается не столько в появлении индукционного тока, сколько в возникновении вихревого электрического поля. Вихревое электрическое поле порождается переменным магнитным полем. В отличие от электростатического поля вихревое электрическое поле не является потенциальным, его силовые линии всегда замкнуты, подобно силовым линиям магнитного поля.

Явление электромагнитной индукции заключается в том, что при всяком изменении магнитного потока , пронизывающего кон-тур замкнутого проводника, в этом проводнике образуется электрический ток , существующий в течение всего процесса изменения магнитного потока. Явление электромагнитной индукции можно обнаружить в таких ситуациях:

1. при относительном движении катушки и магнита;

2. при изменении индукции магнитного поля в контуре, который расположен перпендикулярно линиям магнитного поля.


На этом рисунке катушка А , которая включена в цепь источника тока, вставлена в другую катушку С , которая подключена к гальванометру. При замыкании и размы-кании цепи катушки А в катушке С образуется индукционный ток. Индукционный ток возникает также при изменении тока в катушке С или при движении катушек друг относительно друга;

3. при изменении положения контура, расположенного в постоянном магнитном поле.


Ток в контуре может появляться и при вращении контура в поле постоянного магнита (рис. а ), и при вращении самого магнита внутри контура (рис. б ).

Открытие электромагнитной индукции принадлежит к числу самых значимых открытий XIX века. Оно вызвало появление и бурное развитие электротехники и радиотехники.

На основании явления электромагнитной индукции были основаны мощные генераторы электрической энергии, в разработке которых принимали участие ученые и техники разных стран. Среди них были и российские ученые: Эмилий Христианович Ленц, Борис Семенович Якоби, Михаил Иосифович Доливо-Добровольский и другие, внесшие большой вклад в развитие электротехники.

Закон электромагнитной индукции лежит в основе современной электротехники, а также радиотехники, которая, в свою очередь, составляет ядро современной индустрии, полностью преобразившей всю нашу цивилизацию. Практическое применение электромагнитной индукции началось только спустя полвека после ее открытия. В то время технический прогресс шел еще сравнительно медленно. Причина, по которой электротехника играет столь важную роль во всей нашей современной жизни, состоит в том, что электричество является наиболее удобной формой энергии и именно благодаря закону электромагнитной индукции. Последний позволяет легко получать электроэнергию из механической (генераторы), гибко распределять и транспортировать энергию (трансформаторы) и преобразовывать ее обратно в механическую (электромотор) и другие виды энергии, причем все это происходит с очень высоким КПД. Еще каких-нибудь 50 лет назад распределение энергии между станками на заводах осуществлялось через сложную систему валов и ременных передач - лес трансмиссий составлял характерную деталь индустриального «интерьера» того времени. Современные станки оборудованы компактными электродвигателями, питаемыми по системе скрытой электропроводки.

Современная индустрия использует единую систему электроснабжения, охватывающую всю страну, а иногда и несколько соседних стран.

Система электроснабжения начинается с генератора электроэнергии. Работа генератора основана на непосредственном использовании закона электромагнитной индукции. Схематически простейший генератор представляет собой неподвижный электромагнит (статор), в поле которого вращается катушка (ротор). Возбуждаемый в обмотке ротора переменный ток снимается с помощью специальных подвижных контактов - щеток. Так как через подвижные контакты трудно пропустить большую мощность, часто применяется обращенная схема генератора: вращающийся электромагнит возбуждает ток в неподвижных обмотках статора. Таким образом, генератор преобразует в электричество механическую энергию вращения ротора. Последний приводится в движение с помощью либо тепловой энергии (паровая или газовая турбина), либо механической (гидротурбина).

На другом конце системы энергоснабжения стоят различные исполнительные механизмы, использующие электроэнергию, важнейшим из которых является электродвигатель (электромотор). Наиболее распространен, благодаря своей простоте, так называемый асинхронный двигатель, изобретенный независимо в 1885-1887 гг. хттальяноким физиком Феррарисом и знаменитым хорватским инженером Тесла (США). Статор такого двигателя представляет собой сложный электромагнит, создающий вращающееся поле. Вращение поля достигается с помощью системы обмоток, токи в которых сдвинуты по фазе. В простейшем случае достаточно взять суперпозицию двух полей в перпендикулярных направлениях, сдвинутых по фазе на 90° (рис. VI.10).

Такое поле можно записать в виде комплексного выражения:

которое представляет двумерный вектор постоянной длины, вращающийся против часовой стрелки с частотой со. Хотя формула (53.1) похожа на комплексное представление переменного тока в § 52, ее физический смысл иной. В случае переменного тока реальное значение имела только действительная часть комплексного выражения, здесь же комплексная величина представляет двумерный вектор, а ее фаза не только является фазой колебаний компонент переменного поля, но и характеризует направление вектора поля (см. рис. VI.10).

В технике обычно используется несколько более сложная схема вращения поля с помощью так называемого трехфазного тока, т. е. трех токов, фазы которых сдвинуты на 120° друг относительно друга. Эти токи создают магнитное поле в трех направлениях, повернутых одно относительно другого на угол 120° (рис. VI.11). Отметим, что такой трехфазный ток автоматически получается в генераторах с аналогичным расположением обмоток. Получивший широкое распространение в технике трехфазный ток был изобретен

Рис. VI.10. Схема получения вращающегося магнитного поля.

Рис. VI.11. Схема асинхронного двигателя. Ротор для простоты показан в виде одного витка.

в 1888 г. выдающимся русским электротехником Доливо-Добровольским, который построил в Германии на этой основе первую в мире техническую линию электропередачи.

Обмотка ротора асинхронного двигателя состоит в простейшем случае из короткозамкнутых витков. Переменное магнитное поле наводит в витках такой ток, который приводит к вращению ротора в том же направлении, что и магнитное поле. В соответствии с правилом Ленца ротор стремится «догнать» вращающееся магнитное поле. Для нагруженного двигателя скорость вращения ротора всегда меньше, чем поля, так как в противном случае ЭДС индукции и ток в роторе обратились бы в нуль. Отсюда название - асинхронный двигатель.

Задача 1. Найти скорость вращения ротора асинхронного двигателя в зависимости от нагрузки.

Уравнение для тока в одном витке ротора имеет вид

где - угловая скорость скольжения поля относительно ротора, характеризует ориентацию витка относительно поля, расположение витка в роторе (рис. VI.12, а). Переходя к комплексным величинам (см. § 52), получим решение (53.2)

Вращающий момент, действующий на виток в этом же магнитном поле,


Рис. VI.12. К задаче об асинхронном двигателе. а - виток обмотки ротора в «скользящем» поле; б - нагрузочная характеристика двигателя.

Обычно обмотка ротора содержит большое число равномерно расположенных витков, так что суммирование по 9 можно заменить интегрированием, в результате получаем для полного момента на валу двигателя

где - число витков ротора. График зависимости изображен на рис. VI.12, б. Максимальный момент и соответствует частоте скольжения Отметим, что омическое сопротивление ротора влияет только на частоту скольжения, но не на максимальный момент двигателя. Отрицательная частота скольжения (ротор «обгоняет» поле) соответствует режиму генератора. Для поддержания такого режима необходимо затрачивать внешнюю энергию, которая преобразуется в электрическую в обмотках статора.

При заданном моменте частота скольжения неоднозначна, однако устойчивым является только режим

Основной элемент систем преобразования и транспортировки электроэнергии - трансформатор, изменяющий напряжение переменного тока. Для дальней передачи электроэнергии выгодно использовать максимально возможное напряжение, ограничиваемое только пробоем изоляции. В настоящее время действуют линии передачи с напряжением около При заданной передаваемой мощности ток в линии обратно пропорционален напряжению, а потери в линии падают как квадрат напряжения. С другой стороны, для питания потребителей электроэнергии необходимы значительно меньшие напряжения, главным образом по соображениям простоты конструкции (изоляции), а также техники безопасности. Отсюда необходимость трансформации напряжения.

Обычно трансформатор состоит из двух обмоток на общем железном сердечнике (рис. VI. 13). Железный сердечник необходим в трансформаторе для уменьшения потока рассеяния и, следовательно, лучшего потокосцепления между обмотками. Так как железо является одновременно и проводником, оно пропускает переменное

Рис. V1.13. Схема трансформатора переменного тока.

Рис. VI.14. Схема пояса Роговского. Штриховой линией условно показан путь интегрирования.

магнитное поле лишь на небольшую глубину (см. § 87). Поэтому сердечники трансформаторов приходится делать шихтованными, т. е. в виде набора тонких пластин, электрически изолированных одна от другой. Для промышленной частоты 50 Гц обычная толщина пластины составляет 0,5 мм. Для трансформаторов на высокие частоты (в радиотехнике) приходится использовать очень тонкие пластины ( мм) или ферритовые сердечники.

Задача 2. На какое напряжение нужно изолировать пластины сердечника трансформатора?

Если число пластин в сердечнике а напряжение на виток обмотки трансформатора то напряжение между соседними пластинами

В простейшем случае отсутствия рассеянного потока отношение ЭДС в обеих обмотках пропорционально числу их витков, так как ЭДС индукции на один виток определяется одним и тем же потоком в сердечнике. Если, кроме того, потери в трансформаторе малы, а сопротивление нагрузки велико, то очевидно, что отношение напряжений на первичной и вторичной обмотках также пропорционально . В этом и состоит принцип работы трансформатора, позволяющего таким образом легко изменять напряжение во много раз.

Задача 3. Найти коэффициент трансформации напряжения при произвольной нагрузке.

Пренебрегая потерями в трансформаторе и рассеянием (идеальный трансформатор), запишем уравнение для токов в обмотках в виде (в единицах СИ)

где - комплексное сопротивление нагрузки (см. § 52) и использовано выражение (51.2) для ЭДС индукции сложной цепи. С помощью соотношения (51.6); можно найти коэффициент трансформации напряжения не решая уравнений (53.6), а просто поделив их одно на другое:

Коэффициент трансформации оказывается равным, таким образом, просто отношению числа витков при любой нагрузке. Знак зависит от выбора начала и конца обмоток.

Для нахождения коэффициента трансформации по току нужно решить систему (53.7), в результате чего получим

В общем случае коэффициент оказывается некоторой комплексной величиной, т. е. между токами в обмотках появляется сдвиг фаз. Представляет интерес частный случай малой нагрузки Тогда т. е. отношение токов становится обратным отношению напряжений.

Такой режим работы трансформатора можно использовать для измерения больших токов (трансформатор тока). Оказывается, что такое же простое преобразование токов сохраняется и для произвольной зависимости тока от времени при специальной конструкции трансформатора тока. В этом случае он называется поясом Роговского (рис. VI.14) и представляет собой гибкий замкнутый соленоид произвольной формы с равномерной намоткой. Работа пояса основана на законе сохранения циркуляции магнитного поля (см. § 33): где интегрирование производится по контуру внутри пояса (см. рис. VI.14), - полный измеряемый ток, охватываемый поясом. Предполагая, что поперечные размеры пояса достаточно малы, можно записать ЭДС индукции, наводимую на поясе, так:

где - поперечное сечение пояса, а - плотность намотки, обе величины предполагаются постоянными вдоль пояса; внутри пояса, если плотность намотки пояса и его сечение 50 постоянны по длине (53.9).

Простое преобразование электрического напряжения возможно только для переменного тока. Этим определяется его решающая роль в современной индустрии. В тех случаях, когда требуется постоянный ток, возникают существенные трудности. Например, в сверхдальних линиях передачи электроэнергии применение постоянного тока дает значительные преимущества: уменьшаются тепловые потери, так как нет скин-эффекта (см. § 87) и отсутствуют резонансные

(волновые) переходные процессы при включении - выключении линии передачи, длина которой порядка длины волны переменного тока (6000 км для промышленной частоты 50 Гц). Трудность же состоит в выпрямлении переменного тока высокого напряжения на одном конце линии передачи и обратного преобразования - на другом.



Статьи по теме