Ремонт амперметров: Энергетика под контролем. Ремонт электрической части магнитоэлектрических амперметров и вольтметров Ремонт стрелочных амперметров и вольтметров

Под таким ремонтом понимается выполнение регулировок, в большей степени в электронных цепях измерительного прибора, в итоге которых его показания оказываются в границах данного класса точности.

По мере надобности регулировку производят одним либо несколькими методами:

    конфигурацией активного сопротивления в поочередных и параллельных электронных цепях измерительного прибора;

    конфигурацией рабочего магнитного потока через рамку средством перестановки магнитного шунта либо намагничиванием (размагничиванием) неизменного магнита;

    конфигурацией противодействующего момента.

В общем случае сначала достигают установки указателя в положение, соответственное верхнему лимиту измерений при номинальном значении измеряемой величины. Когда такое соответствие достигнуто, поверяют измерительный прибор на числовых отметках и записывают погрешность измерения на этих отметках.

Если погрешность превосходит допускаемую, то узнают, нельзя ли методом регулировки целенаправленно внести допускаемую погрешность на конечной отметке спектра измерений, с тем чтоб погрешности на других числовых отметках «уложились» в допускаемые пределы.

В тех случаях, когда такая операция не дает подходящих результатов, поновой создают градуировку прибора с перечерчиванием шкалы. Как правило это имеет место после полгого ремонта измерительного прибора.

Регулировку магнитоэлектрических устройств делают при питании неизменным током, а нрав регулировок устанавливают зависимо от конструкции и предназначения прибора.

По предназначению и конструкции магнитоэлектрические приборы делятся на последующие главные группы:

  • вольтметры с обозначенным на циферблате номинальным внутренним сопротивлением,
  • вольтметры, у каких внутреннее сопротивление не обозначено на циферблате;
  • амперметры однопредельные с внутренним шунтом;
  • амперметры многопредельные с универсальным шунтом;
  • милливольтметры без устройства температурной компенсации;
  • милливольтметры с устройством температурной компенсации.

Регулировка вольтметров, у каких на циферблате обозначено
номинальное внутреннее сопротивление

Вольтметр включают в поочередную цепь по схеме включения миллиамперметра и регулируют так, чтоб получить при номинальном токе отклонение указателя на конечную числовую отметку спектра измерений. Номинальный ток вычисляют как личное от деления номинального напряжения на номинальное внутреннее сопротивление.

При всем этом регулировку отличия указателя на конечную числовую отметку делают или конфигурацией положения магнитного шунта, или подменой спиральных пружинок, или
конфигурацией сопротивления шунта, параллельного рамке, если таковое имеется.

Магнитный шунт в общем случае отводит через себя до 10% магнитного потока, текущего через междужелезное место, при этом перемещение этого шунта в сторону перекрывания полюсных наконечников приводит к уменьшению магнитного потока в междужелезном пространстве и, соответственно, к уменьшению угла отличия указателя.

Спиральные пружинки (растяжки) в электроизмерительных устройствах служат, во-1-х, для подвода и отвода тока от рамки и, во-2-х, для сотворения момента, противодействующего повороту рамки. При повороте рамки одна из пружинок закручивается, а 2-ая раскручивается, в связи с чем создается суммарный противодействующий момент пружинок.

Если нужно уменьшить угол отличия указателя, то следует поменять имеющиеся в приборе спиральные пружинки (растяжки) на более «сильные», т. е. установить пружинки с завышенным противодействующим моментом.

Этот вид регулировки нередко относят к ненужному, потому что он связан с тщательной работой по подмене пружинок. Но ремонтники, имеющие большой опыт в перепайке спиральных пружинок (растяжек), предпочитают конкретно этот метод. Дело в том, что при регулировке конфигурацией положения пластинки магнитного шунта в любом случае она в итоге оказывается смещенной к краю и отпадает возможность в предстоящем перемещением магнитного шунта корректировать показания прибора, нарушаемые старением магнита.

Изменение сопротивления резистора, шунтирующего цепь рамки с дополнительным сопротивлением, можно допустить только как крайнюю меру, потому что такое разветвление тока обычно употребляется в устройствах температурной компенсации. Естественно, что хоть какое изменение обозначенного сопротивления будет нарушать температурную компенсацию и в последнем случае может быть допущено только в маленьких границах. Нельзя также забывать, что изменение сопротивления этого резистора, связанное с удалением либо с добавлением витков проволоки, должно сопровождаться долговременной, но неотклонимой операцией старения манганиновой проволоки.

С целью сохранения номинального внутреннего сопротивления вольтметра любые конфигурации сопротивления шунтирующего резистора должны сопровождаться конфигурацией дополнительного сопротивления, что еще больше
затрудняет регулировку и делает ненужным применение этого метода.

Регулировка вольтметров, у каких внутреннее
сопротивление не обозначено на циферблате

Вольтметр включают, как обычно, параллельно измеряемой электронной цепи и регулируют, чтоб получить отклонение указателя на конечную числовую отметку спектра измерений при номинальном напряжении для данного предела измерений. Регулировку делают конфигурацией положения пластинки при перемещении магнитного шунта, либо же средством конфигурации дополнительного сопротивления, либо методом подмены спиральных пружинок (растяжек). Все замечания, изготовленные выше, справедливы и в этом случае.

Нередко вся электронная цепь снутри вольтметра - рамка и проволочные резисторы - оказывается спаленной. При ремонте такового вольтметра сначала убирают все спаленные части, потом кропотливо чистят все оставшиеся несгоревшие части, устанавливают новейшую подвижную часть, замыкают накоротко рамку, уравновешивают подвижную часть, размыкают рамку и, включив прибор по схеме миллиамперметра, т. е. поочередно с примерным миллиамперметром, определяют ток полного отличия подвижной части, изготовляют резистор с дополнительным сопротивлением, по мере надобности намагничивают магнит и в заключение собирают прибор.

Регулировка однопредельных амперметров с внутренним шунтом

При всем этом может быть два варианта ремонтных операций:

1) имеется неповрежденный внутренний шунт, и требуется, заменив резистор при той же рамке перейти на
новый предел измерений, т. е. поновой градуировать ампер
метр;

2) при полном ремонте амперметра была заменена
рамка, в связи с чем поменялись характеристики подвижной
части, нужно высчитать, сделать новый и поменять
старенькый резистор с дополнительным сопротивлением.

В обоих случаях сначала определяют ток полного отличия
рамки прибора, зачем подменяют резистор на магазин сопротивления и, пользуясь лабораторным либо переносным потенциометром, компенсационным способом определяют сопротивление и ток полного отличия
рамки. Таким же методом определяют сопротивление шунта.

Регулировка многопредельных амперметров с внутренним
шунтом

В данном случае в амперметр устанавливают так именуемый универсальный шунт, т. е. шунт, который в
зависимости от избранного верхнего предела измерений подключают параллельно рамке и резистору с дополнительным сопротивлением полностью либо частью от полного сопротивления.

К примеру, шунт в трехпредельном амперметре состоит из 3-х поочередно включенных резисторов Rb R2 и R3. Допустим, амперметр может иметь хоть какой из 3-х пределов измерений - 5, 10 либо 15 А. Шунт врубается поочередно в измерительную электронную цепь. В приборе имеется общий зажим « + », к которому подключен вход резистора R3, являющегося шунтом на пределе измерений 15 А; к выходу резистора R3 поочередно включены резисторы R2 и Rx.

При подключении электронной цепи к зажимам, обозначенным « + » и «5 А», на рамку через резистор
R доб снимается напряжение с поочередно включенных резисторов Rх, R2 и R3, т. е. стопроцентно со всего шунта. При подключении электронной цепи к зажимам « + » и «10 А» напряжение снимается с поочередно включенных резисторов R2 и R3 и при всем этом резистор Rx оказывается включенным поочередно в цепь резистора
R доб, при подключении к зажимам « + » и «15 А» напряжение в цепь рамки снимается с резистора R3, а резисторы R2 и Rх оказываются включенными в цепь
R доб.

При ремонте такового амперметра вероятны два варианта:

1) пределы измерений и сопротивление шунта не меняются, но в связи с подменой рамки либо дефектного
резистора необходимо высчитать, сделать и установить
новый резистор;

2 ) делается градуировка амперметра, т. е. меняются его пределы измерений, в связи с чем необходимо рас
считать, сделать и установить новые резисторы,
после этого произвести регулировку прибора.

В случае последней необходимости, что бывает при наличии высокоомных рамок, когда температурная компенсация нужна, используют схему с температурной компенсапией средством резистора либо терморезистора.
Прибор поверяют на всех границах, при этом при правильной подгонке первого предела измерений и правильном изготовлении шунта дополнительных регулировок обычно не требуется.

Регулировка милливольтметров, не имеющих устройств
специальной температурной компенсации

В магнитоэлектрическом приборе имеются рамка, намотанная из медной проволоки, и спиральные пружинки, сделанные из оловянноцинковой бронзы либо из фосфористой бронзы, электронное сопротивление которых находится в зависимости от температуры воздуха снутри корпуса прибора: чем выше температура, тем больше сопротивление.

Беря во внимание, что температурный коэффициент оловянноцинковой
бронзы достаточно мал (0,01), а манганиновой проволоки, из которой сделан
дополнительный резистор, близок к нулю, приближенно считают температурный
коэффициент магнитоэлектрического прибора:

Хпр = Хр (R р / R р
+ R доб)

где Хр - температурный коэффициент рамки из медной проволоки, равный 0,04 (4%).
Из уравнения следует, что для уменьшения воздействия на показания прибора отклонений температуры воздуха снутри корпуса от ее номинального значения дополнительное
сопротивление должно быть в несколько раз больше сопротивления рамки.
Зависимость дела дополнительного сопротивления к сопротивлению рамки от класса точности прибора имеет вид

Rдоб/Rр = (4 — К / К)

где К - класс точности измерительного прибора.

Из этого уравнения следует, что, к примеру, для устройств класса точности 1,0 дополнительное сопротивление должно быть втрое больше сопротивления рамки, а для класса точности 0,5 - уже в семь раз больше. Это приводит к уменьшению полезно применяемого напряжения на рамке, а в амперметрах с шунтами - к повышению напряжения на шунтах. 1-ое вызывает ухудшение черт прибора, а 2-ое - повышение потребляемой мощности шунта. Разумеется, внедрение милливольтметров, не имеющих устройств специальной температурной компенсации, целенаправлено только для щитовых устройств классов точности 1,5 и 2,5.

Регулировку показаний измерительного прибора делают методом подбора дополнительного сопротивления, также конфигурацией положения магнитного шунта. Бывалые ремонтники используют также подмагничивание неизменного магнита прибора. При регулировке включают входящие в набор измерительного прибора соединительные провода либо учитывают их сопротивление средством подключения к милливольтметру магазина сопротивления с подходящим значением сопротивления. При ремонте время от времени прибегают к подмене спиральных пружинок.

Регулировка милливольтметров, имеющих устройство
температурной компенсации

Устройство температурной компенсации позволяет прирастить падение напряжения на рамке, не прибегая к существенному повышению дополнительного сопротивления и потребляемой мощности шунта, что резко улучшает высококачественные свойства однопредельных и многопредельных милливольтметров классов точности 0,2 и 0,5, применяемых, к примеру, в качестве амперметров с шунтом. При постоянном напряжении на зажимах милливольтметра погрешность измерения прибора от конфигурации температуры воздуха снутри корпуса фактически может приближаться к нулю, т. е. быть так малой, что с ней можно не считаться и не учесть.

Если при ремонте милливольтметра обнаружится, что в нем
отсутствует устройство температурной компенсации, то для улучшения черт
прибора такое устройство может быть установлено в прибор.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Задача измерения электрических величин в электротехнике многопланова: разработчику аппаратуры или исследователю необходимо, во-первых, определить совокупность физических явлений, которые можно использовать для получения оценок этих величин.

Во-вторых, нужно проанализировать преимущества и проблемы практической реализации того или иного метода измерений и, наконец, выбрать конкретный способ измерений и соответствующие средства измерений, которые позволят наилучшим образом решить задачу.

Разнообразие измерительных приборов - как универсальных, так и специализированных, обеспечивающих получение результата с известной погрешностью в различных условиях их применения, вызывает трудности при построении измерительных схем даже у опытных специалистов. Для тех же, кто впервые знакомиться с этой проблемой, важно понять основные принципы функционирования измерительных приборов и знать особенности их применения (как правило, большинство из них получили названия в соответствии с названиями измеряемых величин - амперметр, вольтметр, ваттметр, омметр, хотя есть и осциллограф и авометр - универсальный прибор, обеспечивающий измерение токов, напряжений и сопротивлений).

1. Общие св е дения

Электрический контроль регистрирует параметры электрического поля, взаимодействующего с контролируемым объектом (собственно электрический метод), или поля, возникающего в контролируемом объекте в результате внешнего воздействия (термоэлектрический метод) и применяется для контроля диэлектрических и проводящих материалов.

Методы электрического контроля (электростатический порошковый, термоэлектрический, электроискровой, электрического потенциала, емкостной) позволяют определять дефекты различных материалов, измерять толщины покрытий и слоев (вихретоковый контроль), сортировать металлы по маркам, контролировать диэлектрические или полупроводниковые материалы. Недостатками перечисленных методов электрического НК являются необходимость контакта с объектом контроля, жесткие требования к чистоте поверхности изделия, трудности автоматизации процесса измерения и зависимость результатов измерения от состояния окружающей среды.

Электроизмерительные приборы - класс приборов (устройств), применяемых для измерения различных электрических величин. В группу электроизмерительных приборов входят следующие средства измерений: мультиметры, омметры, амперметры, токовые клещи, анализаторы качества электрической энергии, осциллографы, логгеры тока и напряжения, а также другие контрольно-измерительные приборы.

Наиболее существенным признаком для классификации электроизмерительной аппаратуры является измеряемая или воспроизводимая физическая величина, в соответствии с этим электроизмерительные приборы подразделяются на ряд видов:

· Амперметры -- для измерения силы электрического тока;

· Вольтметры -- для измерения электрического напряжения;

· Омметры -- для измерения электрического сопротивления;

· Мультиметры (тестеры, авометры) -- комбинированные приборы

· Частотомеры -- для измерения частоты колебаний электрического тока;

· Магазины сопротивлений -- для воспроизведения заданных сопротивлений;

· Ваттметры и варметры -- для измерения мощности электрического тока;

· Электрические счётчики -- для измерения потреблённой электроэнергии

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Электр ический ток - это упорядоченное (направленное) движение электрически заряженных частиц или заряженных макроскопических тел. За направление тока принимают направление движения положительно заряженных частиц; если ток создаётся отрицательно заряженными частицами (например, электронами), то направление тока считают противоположным направлению движения частиц.

Электр ическое напряж ение между двумя точками электрической цепи или электрического поля - это работа электрического поля по перемещению единичного положительного заряда из одной точки в другую.

Электрическое сопротивление - скалярная физическая величина, характеризующая свойства проводника и равная отношению напряжения на концах проводника к силе электрического тока, протекающего по нему.

По принципу действия приборы для электрического контроля делятся на:

- Электромеханические приборы:

· магнитоэлектрические;

· электромагнитные;

· электродинамические;

· электростатические;

· ферродинамические;

· индукционные;

· магнитодинамические ;

- Электронные приборы;

Термоэлектрические приборы;

Электрохимические приборы.

2. Устройство и техническое обслуживание Амперметра, Вольтметра

2.1 Устройство и техническое обслуживание Амперметра

Амперметр показывает силу зарядного и разрядного тока; он включается в цепь последовательно между источниками тока и потребителями.

1 - шкала; 2 - магнит; 3 - якорек; 4 - кронштейн; 5 - ось якорька и стрелки; 6 - шина; 7 - стре л ка.

Параллельно постоянному магниту 2 в кронштейне 4 установлен на оси 5 стальной якорек 3 со стрелкой 7. Под воздействием магнита якорек приобретает магнитные свойства и располагается вдоль силовых линий, проходящих вдоль магнита. При таком положении якорька стрелка 7 находится на нулевом делении шкалы 1.

Когда ток генератора или батареи проходит по шине 6, вокруг нее возникает магнитный поток, силовые линии которого в том месте, где находится якорек, перпендикулярны силовым линиям постоянного магнита 2. Под действием магнитного потока, создаваемого током, якорек стремится повернуться на 90° относительно исходного положения, чему противодействует магнитный поток постоянного магнита.

От величины и направления тока, проходящего по шине 6, будет зависеть сила взаимодействия обоих магнитных потоков, а следовательно, величина и направление отклонения стрелки 7 относительно нулевого деления шкалы 1.

При запуске двигателя и работе его на малых оборотах, когда включенные потребители тока питаются от батареи, стрелка амперметра отклоняется от нулевого деления в сторону разрядки (в направлении знака минус, т.е. влево). С увеличением числа оборотов коленчатого вала все включенные потребители питаются током генератора; если ток генератора идет в аккумуляторную батарею и подзаряжает ее, то стрелка амперметра отклоняется в сторону зарядки (к знаку плюс, т.е. вправо).

В генераторах с регуляторами напряжения сила зарядного тока автоматически регулируется в зависимости от степени заряженности батареи. Поэтому, если батарея полностью заряжена, а другие потребители не включены, зарядный ток будет равен нулю и стрелка амперметра при работе двигателя будет находиться, около нулевого деления, почти не отклоняясь в сторону зарядки. В цепь стартера амперметр не включен, так как он не рассчитан на силу тока, потребляемого стартером.

2.2Устройство и техническое обслуживание Вольтметра

Обобщенная структурная схема вольтметров прямого преобразования показана на рис. 5

Измеряемое напряжение подается на входное устройство (ВУ), с выхода которого сигнал поступает на измерительный преобразователь (ИП) и далее на измерительное устройство (ИУ). В качестве входного устройства могут использоваться делители и трансформаторы напряжения. В качестве ИП применяются преобразователи переменного сигнала в постоянный, усилители, детекторы и др. В качестве измерительного устройства могут использоваться различные приборы на основе измерительных механизмов (чаще всего используется магнитоэлектрический прибор).

Электронные вольтметры.

Электронные вольтметры постоянного тока состоят из делителя входного напряжения, усилителя постоянного тока, и измерительного устройства, в качестве которого обычно используется магнитоэлектрических микроамперметр. Диапазон измерения составляет 100 мВ … 1000 В.

Электронные вольтметры переменного тока строятся по одной из структурных схем (рис.6), различающихся типом ИП.

В вольтметрах (рис.6, а) измеряемое переменное напряжениеU x преобразуется в постоянное, которое затем измеряется вольтметром постоянного тока.

В вольтметрах, построенных по схеме рис. 6, б, измеряемое напряжение сначала усиливается усилителем переменного тока (УПер.Т), а затем выпрямляется с помощью детектора Д и измеряется ИУ. При необходимости между детектором и ИУ может быть дополнительно включен УПТ.

Электронные вольтметры, выполненные по схеме рис. 6, имеют меньшую чувствительность, меньшую точность, но имеют более широкий частотный диапазон (от 10 Гц до 100 ...700 МГц). Нижний предел таких вольтметров ограничивается порогом чувствительности выпрямителя и составляет обычно 0,1 … 0,2 В.

Вольтметры, выполненные по схеме рис. 6 , б , имеют более узкий частотный диапазон (до 50 МГц), который ограничивается усилителем переменного тока, но они более чувствительны. Усилители переменного тока позволяют получить значительно больший коэффициент усиления, чем с помощью УПТ. По данной схеме можно построить микровольтметры, у которых нижний предел U x ограничивается собственными шумами усилителя.

Милливольтметры переменного тока в зависимости от устройства измеряют амплитудное, среднее и действующее значения переменного напряжения и строятся по схеме усилитель - выпрямитель. Шкала вольтметра градуируется, как правило, в действующих значениях для синусоидального напряжения, или в 1,11U ср для приборов, показания которых пропорциональны среднему значению напряжения, и в 0,707U m - для приборов, показания которых пропорциональны амплитудному значению.

Э лектронные вольтметры среднего значения служат для измерения относительно высоких напряжений. Такой вольтметр может быть выполнен по схеме рис. 7.2, б с использованием в качестве выпрямителя полупроводникового диодного моста. Показания вольтметра средних значений зависят от формы кривой измеряемого напряжения. Диапазон измерения составляет от 1 мВ до 300 В. Частотный диапазон измеряемого напряжения - от 10 Гц до 10МГц.

На рис. 7. показан пример схемы вольтметра переменного тока типа усилитель-выпрямитель . Данная схема представляет двухполупериодный ПСЗ с включением выпрямительных элементов в цепь обратной связи. Эта схема позволяет существенно снизить порог чувствительности в режиме измерения переменного напряжения при сохранении достаточно широкого частотного диапазона.

Электронные вольтметры действующего значения содержат преобразователь действующих значений. ПДЗ выполняется на элементах с квадратичной ВАХ. Для увеличения протяженности квадратичного участка ВАХ используются на преобразователи на диодных цепочках (см. рис. 6.9). Достоинством является независимость показаний от формы кривой измеряемого напряжения. Для расширения пределов используются емкостные делители напряжения. Диапазон измерения от 1 мВ до 1000 В. Частотный диапазон от 20 Гц до 50 МГц.

Другой метод измерения действующего значения переменного напряжения состоит в определении количества рассеиваемого тепла. Этот метод используется в термовольтметре, где входной ток течет по нити накала, нагревая ее. Выделенное тепло служит непосредственной мерой среднеквадратического значения тока.

Упрощенная функциональная схема вольтметра действующих значений с ПДЗ на термопреобразователях, включенных по способу взаимообратных преобразований показана на рис. 8 .

В усилителе с обратной связью У 1 измеряемое напряжение U x преобразуется в ток I x Этот усилитель должен иметь очень точный коэффициент передачи К такой, чтобы термоЭДС, возникающая термопреобразователе ТП 1 была истинной мерой среднеквадратического значения измеряемого напряжения.

Второй термопреобразователь ТП 2 , по нагревателю которого протекает ток I k , включен последовательно с ТП 1 . Выходные напряжения термопреобразователей имеют противоположную полярность, так что напряжение на входе усилителя постоянного тока У 2 равно разности этих двух напряжений. Если коэффициент этого усилителя достаточно велик, то при сравнительно большом выходном напряжении U вых разность напряжений двух термопреобразователей окажется равной нулю Е 1 = Е 2 . Тогда

U вых = I T R = б I X R = б K U X R.

В этом выражении сопротивление R много больше сопротивления нагревателя термпреобразователя ТП 2 . Коэффициент б служит критерием согласованности термопреобразователей ТП 1 и ТП 2 (б? 1). К - коэффициент передачи входного каскада: К = I X /U X .

Выражение (7.1) для U вых показывает, что абсолютное значение параметров термопреобразователей ТП 1 и ТП 2 не имеют решающего значения; важно знать насколько хорошо они согласованы.

Примером построения вольтметра с использованием термопреобразователей является вольтметр В3-45. Погрешность данного вольтметра в рабочем диапазоне частот 40 Гц - 1 МГц не превышает 2,5%.

Термопреобразователи могут использоваться также и для построения амперметров.

Сочетание электронного усилителя с электростатическим вольтметром на выходе позволяет не использовать в схеме вольтметра действующих значений специального ПДЗ. Недостатками такого вольтметра являются: 1) неравномерность шкалы; 2) малая чувствительность и др.

Электронные амплитудные вольтметры выполняются по схеме, показанной на рис. 7.2, а, с использованием преобразователей амплитудных (пиковых) значений. Показания такого вольтметра пропорциональны амплитудному значению измеряемого напряжения. Такие вольтметры позволяют измерять амлитуду импульсов с минимальной длительностью от десятых долей микросекунды и скважностью 2 … 500. Диапазон измерения - от 100 мВ до 1000 В. Частотный диапазон - от 20 Гц до 1000 МГц.

Электронные импульсные вольтметры содержат преобразователь амплитуды импульса ПАИ и предназначены для измерения амплитуд периодических сигналов с большой скважностью и амплитуд одиночных импульсов. Обобщенная структурная схема ИВ представлена на рис. 9

Возможно, построение ИВ с предварительным усилением исследуемого импульсного сигнала. В качестве ОУ в ИВ обычно используются электромеханические ОУ. Погрешность электронных импульсных вольтметров составляет 0,5% и более, рабочий диапазон частот - от 20 Гц до 1 ГГц; низший предел измерения составляет 1 мкВ.

Электронные селективные вольтметры используются для измерения гармонических напряжений в условиях действия помех. На рис. 7.6 показана структурная схема селективного вольтметра.

Частотная селекция входного сигнала осуществляется с помощью перестраиваемого гетеродина (Г), смесителя (См) и узкополосного усилителя промежуточной частоты (УПЧ), который обеспечивает высокую чувствительность и требуемую избирательность. Кроме того, в селективных вольтметрах обязательно наличие системы автоматической подстройки частоты и калибратора. Калибратор - образцовый источник (генератор) переменного напряжения определенного уровня, позволяющий исключить систематические погрешности из-за изменения коэффициентов передачи узлов вольтметра. Для калибровки переключательSA устанавливается в положение 2. Сигнал после УПЧ выпрямляется детектором (Д) и измеряется измерительным устройством (ИУ).

Универсальные электронные вольтметры это приборы, в которых совмещаются функции измерения постоянных и переменных напряжений. Типовая структурная схема универсального электронного вольтметра показана на рис. 11. При измерении постоянных напряжений входная величина через переключатель рада тока SA подается на вход преобразователя импеданса ПИ, выходной сигнал которого при необходимости преобразуется масштабным преобразователем МП, нагрузкой которого является измерительное устройство ИУ (в качестве ИУ обычно выступает магнитоэлектрический микроамперметр). При измерении переменных напряжений измеряемая величина поступает на вход ПАЗ, а постоянное напряжение с выхода ПАЗ измеряется вольтметром постоянного тока. Источник питания ПИ является важной составной частью вольтметра.

При создании универсальных вольтметров используется главным образом схема ПАЗ с закрытым входом, что объясняется независимостью напряжения на ее выходе от измерять постоянные напряжения от десятков милливольт до 300 В с погрешностью 2,5 - 4%, а переменные в диапазоне от сотен милливольт до 300 В при частоте входного напряжения от 20 Гц до 1000 МГц с погрешностью 4 - 6%. Применение масштабных преобразователей позволяет расширить диапазон измерения до 1000 В.

3 . Ремонт Амперметра, Вольтметра

Ремонт электрической части магнитоэлектрических амперме т ров и вольтметров

Под таким ремонтом понимается выполнение регулировок, преимущественно в электрических цепях измерительного прибора, в результате которых его показания оказываются в пределах заданного класса точности.

При необходимости регулировку осуществляют одним или несколькими способами:

· изменением активного сопротивления в последовательных и параллельных электрических цепях измерительного прибора;

· изменением рабочего магнитного потока через рамку посредством перестановки магнитного шунта или намагничиванием (размагничиванием) постоянного магнита;

· изменением противодействующего момента.

В общем случае вначале добиваются установки указателя в положение, соответствующее верхнему пределу измерений при номинальном значении измеряемой величины. Когда такое соответствие достигнуто, поверяют измерительный прибор на числовых отметках и записывают погрешность измерения на этих отметках.

Если погрешность превышает допускаемую, то выясняют, нельзя ли путем регулировки преднамеренно внести допускаемую погрешность на конечной отметке диапазона измерений, с тем чтобы погрешности на других числовых отметках «уложились» в допускаемые пределы.

В тех случаях, когда такая операция не дает нужных результатов, заново производят градуировку прибора с перечерчиванием шкалы. Обычно это имеет место после капитального ремонта измерительного прибора.

Регулировку магнитоэлектрических приборов выполняют при питании постоянным током, а характер регулировок устанавливают в зависимости от конструкции и назначения прибора.

По назначению и конструкции магнитоэлектрические приборы делятся на следующие о с новные группы:

· вольтметры с указанным на циферблате номинальным внутренним сопротивлением,

· вольтметры, у которых внутреннее сопротивление не указано на циферблате;

· амперметры однопредельные с внутренним шунтом;

· амперметры многопредельные с универсальным шунтом;

· милливольтметры без устройства температурной компенсации;

· милливольтметры с устройством температурной компенсации.

Регулировка вольтметров, у которых на циферблате указано номинальное внутреннее с о противление

Вольтметр включают в последовательную цепь по схеме включения миллиамперметра и регулируют так, чтобы получить при номинальном токе отклонение указателя на конечную числовую отметку диапазона измерений. Номинальный ток вычисляют как частное от деления номинального напряжения на номинальное внутреннее сопротивление.

При этом регулировку отклонения указателя на конечную числовую отметку выполняют либо изменением положения магнитного шунта, либо заменой спиральных пружинок, либо изменением сопротивления шунта, параллельного рамке, если таковое имеется.

Магнитный шунт в общем случае отводит через себя до 10% магнитного потока, текущего через междужелезное пространство, причем перемещение этого шунта в сторону перекрывания полюсных наконечников приводит к уменьшению магнитного потока в междужелезном пространстве и, соответственно, к уменьшению угла отклонения указателя.

Спиральные пружинки (растяжки) в электроизмерительных приборах служат, во-первых, для подвода и отвода тока от рамки и, во-вторых, для создания момента, противодействующего повороту рамки. При повороте рамки одна из пружинок закручивается, а вторая раскручивается, в связи с чем создается суммарный противодействующий момент пружинок.

Если необходимо уменьшить угол отклонения указателя, то следует поменять имеющиеся в приборе спиральные пружинки (растяжки) на более «сильные», т. е. установить пружинки с повышенным противодействующим моментом.

Этот вид регулировки часто относят к нежелательному, так как он связан с кропотливой работой по замене пружинок. Однако ремонтники, имеющие большой опыт в перепайке спиральных пружинок (растяжек), предпочитают именно этот способ. Дело в том, что при регулировке изменением положения пластинки магнитного шунта в любом случае она в результате оказывается смещенной к краю и отпадает возможность в дальнейшем перемещением магнитного шунта корректировать показания прибора, нарушаемые старением магнита.

Изменение сопротивления резистора, шунтирующего цепь рамки с добавочным сопротивлением, можно допустить лишь как крайнюю меру, так как такое разветвление тока обычно используется в устройствах температурной компенсации. Естественно, что любое изменение указанного сопротивления будет нарушать температурную компенсацию и в крайнем случае может быть допущено лишь в небольших пределах. Нельзя также забывать, что изменение сопротивления этого резистора, связанное с удалением или с добавлением витков проволоки, должно сопровождаться длительной, но обязательной операцией старения манганиновой проволоки.

С целью сохранения номинального внутреннего сопротивления вольтметра любые изменения сопротивления шунтирующего резистора должны сопровождаться изменением добавочного сопротивления, что еще больше затрудняет регулировку и делает нежелательным применение этого способа.

Регулировка вольтметров, у которых внутреннее сопроти в ление не указано на циферблате

Вольтметр включают, как обычно, параллельно измеряемой электрической цепи и регулируют, чтобы получить отклонение указателя на конечную числовую отметку диапазона измерений при номинальном напряжении для данного предела измерений. Регулировку выполняют изменением положения пластинки при перемещении магнитного шунта, или же посредством изменения добавочного сопротивления, или путем замены спиральных пружинок (растяжек). Все замечания, сделанные выше, справедливы и в данном случае.

Часто вся электрическая цепь внутри вольтметра -- рамка и проволочные резисторы -- оказывается сгоревшей. При ремонте такого вольтметра вначале удаляют все сгоревшие части, затем тщательно чистят все оставшиеся несгоревшие части, устанавливают новую подвижную часть, замыкают накоротко рамку, уравновешивают подвижную часть, размыкают рамку и, включив прибор по схеме миллиамперметра, т. е. последовательно с образцовым миллиамперметром, определяют ток полного отклонения подвижной части, изготовляют резистор с добавочным сопротивлением, при необходимости намагничивают магнит и в заключение собирают прибор.

Регулировка однопредельных амперметров с внутренним шу н том

При этом может быть два случая ремонтных операций:

1) имеется неповрежденный внутренний шунт, и требуется, заменив резистор при той же рамке перейти на новый предел измерений, т. е. заново градуировать ампер метр;

2) при капитальном ремонте амперметра была заменена рамка, в связи с чем изменились параметры подвижной части, необходимо рассчитать, изготовить новый и заменить старый резистор с добавочным сопротивлением.

В обоих случаях вначале определяют ток полного отклонения рамки прибора, для чего заменяют резистор на магазин сопротивления и, пользуясь лабораторным или переносным потенциометром, компенсационным методом измеряют сопротивление и ток полного отклонения рамки. Таким же путем измеряют сопротивление шунта.

Регулировка многопредельных амперметров с внутренним шу н том

В этом случае в амперметр устанавливают так называемый универсальный шунт, т. е. шунт, который в зависимости от выбранного верхнего предела измерений подключают параллельно рамке и резистору с добавочным сопротивлением целиком или частью от полного сопротивления.

Например, шунт в трехпредельном амперметре состоит из трех последовательно включенных резисторов Rb R2 и R3. Допустим, амперметр может иметь любой из трех пределов измерений -- 5, 10 или 15 А. Шунт включается последовательно в измерительную электрическую цепь. В приборе имеется общий зажим « + », к которому подключен вход резистора R3, являющегося шунтом на пределе измерений 15 А; к выходу резистора R3 последовательно включены резисторы R2 и Rx.

При подключении электрической цепи к зажимам, обозначенным « + » и «5 А», на рамку через резистор Rдоб снимается напряжение с последовательно включенных резисторов Rх, R2 и R3, т. е. полностью со всего шунта. При подключении электрической цепи к зажимам « + » и «10 А» напряжение снимается с последовательно включенных резисторов R2 и R3 и при этом резистор Rx оказывается включенным последовательно в цепь резистора Rдоб, при подключении к зажимам « + » и «15 А» напряжение в цепь рамки снимается с резистора R3, а резисторы R2 и Rх оказываются включенными в цепь Rдоб.

При ремонте такого амперметра возможны два случая:

1) пределы измерений и сопротивление шунта не изменяются, но в связи с заменой рамки или дефектного резистора нужно рассчитать, изготовить и установить новый резистор;

2) производится градуировка амперметра, т. е. изменяются его пределы измерений, в связи с чем нужно рас считать, изготовить и установить новые резисторы, после чего произвести регулировку прибора.

В случае крайней необходимости, что бывает при наличии высокоомных рамок, когда температурная компенсация нужна, применяют схему с температурной компенсапией посредством резистора или терморезистора. Прибор поверяют на всех пределах, причем при правильной подгонке первого предела измерений и правильном изготовлении шунта дополнительных регулировок обычно не требуется.

Регулировка милливольтметров, не имеющих устройств специальной температурной ко м пенсации

В магнитоэлектрическом приборе имеются рамка, намотанная из медной проволоки, и спиральные пружинки, изготовленные из оловянноцинковой бронзы или из фосфористой бронзы, электрическое сопротивление которых зависит от температуры воздуха внутри корпуса прибора: чем выше температура, тем больше сопротивление.

Учитывая, что температурный коэффициент оловянноцинковой бронзы довольно мал (0,01), а манганиновой проволоки, из которой изготовлен добавочный резистор, близок к нулю, приближенно полагают температурный коэффициент магнитоэлектрического прибора:

Х пр = Хр (Rр / Rр + R доб)

амперметр вольтметр измерительный

где Х р -- температурный коэффициент рамки из медной проволоки, равный 0,04 (4%). Из уравнения следует, что для уменьшения влияния на показания прибора отклонений температуры воздуха внутри корпуса от ее номинального значения добавочное сопротивление должно быть в несколько раз больше сопротивления рамки. Зависимость отношения добавочного сопротивления к сопротивлению рамки от класса точности прибора имеет вид

R доб /R р = (4 - К / К)

где К -- класс точности измерительного прибора.

Из этого уравнения следует, что, например, для приборов класса точности 1,0 добавочное сопротивление должно быть в три раза больше сопротивления рамки, а для класса точности 0,5 -- уже в семь раз больше. Это приводит к уменьшению полезно используемого напряжения на рамке, а в амперметрах с шунтами -- к увеличению напряжения на шунтах. Первое вызывает ухудшение характеристик прибора, а второе -- увеличение потребляемой мощности шунта. Очевидно, использование милливольтметров, не имеющих устройств специальной температурной компенсации, целесообразно только для щитовых приборов классов точности 1,5 и 2,5.

Регулировку показаний измерительного прибора выполняют путем подбора добавочного сопротивления, а также изменением положения магнитного шунта. Опытные ремонтники применяют также подмагничивание постоянного магнита прибора. При регулировке включают входящие в комплект измерительного прибора соединительные провода или учитывают их сопротивление посредством подключения к милливольтметру магазина сопротивления с соответствующим значением сопротивления. При ремонте иногда прибегают к замене спиральных пружинок.

Регулировка милливольтметров, имеющих устройство температурной компенсации

Устройство температурной компенсации позволяет увеличить падение напряжения на рамке, не прибегая к существенному увеличению добавочного сопротивления и потребляемой мощности шунта, что резко улучшает качественные характеристики однопредельных и многопредельных милливольтметров классов точности 0,2 и 0,5, используемых, например, в качестве амперметров с шунтом. При неизменном напряжении на зажимах милливольтметра погрешность измерения прибора от изменения температуры воздуха внутри корпуса практически может приближаться к нулю, т. е. быть настолько малой, что с ней можно не считаться и не учитывать.

Если при ремонте милливольтметра обнаружится, что в нем отсутствует устройство температурной компенсации, то для улучшения характеристик прибора такое устройство может быть установлено в прибор.

4. Техника безопасности при ремонте и обслуживании приборов для измерения и контроля электрических величин

1.1. Слесарь КИПиА должен знать и выполнять требования настоящей инструкции. За несоблюдение и невыполнение их он несёт ответственность в установленном законом порядке, в зависимости от характера нарушений и их последствий.

1.2. К работе слесарем КИПиА допускаются лица не моложе 18 лет, прошедшие специальное обучение, изучившие и освоившие правила ТБ, сдавшие экзамен квалификационной комиссии.

1.3. Перед началом работы слесарь по КИПиА должен получить инструктаж по ТБ по предстоящей работе. Без инструктажа приступать к работе не разрешается.

1.4. Запрещается выполнять работу, не входящую в круг обязанностей слесаря КИПиА без дополнительного инструктажа по данной работе.

1.5. Заметив нарушение правил безопасности другим рабочим или какую-либо опасность для окружающих, не оставайтесь безучастным, а предупредите рабочих (мастера) о необходимости соблюдения требований, обеспечивающих безопасность труда.

1.6. При получении травмы немедленно обратитесь в медпункт и сообщите о случившемся своему руководителю, а при его отсутствии, попросите товарищей по работе проинформировать о случившемся руководителя.

1.7. Содержите в чистоте и порядке рабочее место.

1.8. Не допускайте присутствия на рабочем месте посторонних, так как это ослабляет Ваше внимание, что может привести к травмированию, и представляет потенциальную опасность несчастного случая с окружающими.

1.9. Не уходите от работающих станков даже на короткое время без предварительного их отключения.

1.10. Слесарь по контрольно - измерительным приборам и автоматике должен знать и уметь выполнять общие правила по технике безопасности, а также ПТЭ и ПТБ при эксплуатации электроустановок потребителей.

2. Обязанности перед началом работы

2.1. О всех замеченных неисправностях на рабочем месте немедленно сообщите своему руководителю и не приступайте к работе до их устранения.

2.2. Перед началом работы с электроинструментом убедитесь в его исправности, проверьте правильность подключения и наличие заземления.

2.3. Приведите в порядок свою спецодежду: застегните рукава, полы куртки, оденьте головной убор и приберите под него волосы.

2.4. Перед началом работы на наждачном, сверлильном, токарном станках убедитесь в исправности оборудования:

А) осмотрите рабочее место и уберите из под ног, со станка и из проходов то, что мешает работать,

Б) осмотрите пол и деревянную решётку - они должны быть чистыми, сухими и не скользкими,

В) проверьте и обеспечьте достаточную смазку станка,

Г) осмотрите и поставьте на место все ограждения и предохранительные устройства,

Д) убедитесь в наличии защитного заземления станка,

Е) проверьте натяжение приводных ремней,

Ж) проверьте исправность режущего инструмента, принадлежностей и приспособлений, всё неисправное замените,

З) проверьте исправность пускового и остановочного устройств,

И) установите режущий инструмент,

К) проверьте систему охлаждения станка (если есть такая) и наличие охлаждающей жидкости в ванне.

3. Обязанности во время работы.

3.1. Выполняйте порученные производственные задания только в спецодежде, предусмотренной для слесарей КИПиА.

3.2. Не носите в карманах инструменты и предметы с острыми концами, а также едкие и огнеопасные вещества, в противном случае возможны травмы.

Размещено на Allbest.ru

...

Подобные документы

    Общие сведения о измерениях и контроле. Физические основы измерения давления. Классификация приборов измерения и контроля давления. Характеристика поплавковых, гидростатических, пьезометрических, радиоизотопных, электрических, ультразвуковых уровнемеров.

    контрольная работа , добавлен 19.11.2010

    Применение дифференциального манометра для измерения перепадов давления. Классификация приборов по устройству на жидкостные и механические. Ремонт и техническое обслуживание дифференциального манометра, требования безопасности при обращении с ртутью.

    реферат , добавлен 18.02.2013

    Сущность и назначение измерительных приборов, их виды. Классификация и принцип действия механических тахометров. Характеристика центробежных измерительных приборов. Магнитоиндукционные и электрические тахометры, счетчики оборотов, их сервисные функции.

    реферат , добавлен 04.05.2017

    Характеристика методов измерения и назначение измерительных приборов. Устройство и применение измерительной линейки, микроскопических и штанген-инструментов. Характеристика средств измерения с механическим, оптическим и пневматическим преобразованием.

    курсовая работа , добавлен 01.07.2011

    Преобразователи температуры с унифицированным выходным сигналом. Устройство приборов для измерения расхода по перепаду давления в сужающем устройстве. Государственные промышленные приборы и средств автоматизации. Механизм действия специальных приборов.

    курсовая работа , добавлен 07.02.2015

    Средства, методы и погрешности измерений. Классификация приборов контроля технологических процессов добычи нефти и газа; показатели качества автоматического регулирования. Устройство и принцип действия термометров сопротивления и глубинного манометра.

    контрольная работа , добавлен 18.03.2015

    Основные методы и средства для измерения размеров в деталях типа "вал" и "корпус". Расчет исполнительных размеров калибров для контроля шлицевого соединения с прямобочным соединением. Схема измерительного устройства для контроля радиального биения.

    курсовая работа , добавлен 27.08.2012

    Современные методы и средства измерения расстояний в радиолокационной практике. Специфика эксплуатации контрольно-измерительных оптических дальномеров. Средства измерения, испытания и контроля, методики и стандарты, регламентирующие их выполнение.

    курсовая работа , добавлен 05.12.2013

    Выбор методов и средств для измерения размеров в деталях типа "Корпус" и "Вал"; разработка принципиальных схем средств измерений и контроля, принцип их функционирования, настройки и процесса измерения. Схема устройства для контроля радиального биения.

    курсовая работа , добавлен 18.05.2012

    Виды и предназначение компрессионных холодильных установок. Устройство и технология работы приборов автоматики. Эксплуатация устройств автоматики и контрольно-измерительных приборов (КИП). Расчет охлаждаемой площади для продовольственного магазина.

Как отремонтировать вольтметр В7-40? Характерные неисправности.

Необходимая для ремонта и калибровки аппаратура (в скобках написана используемая аппаратура):

тестер (MY64);осциллограф (GDS-820);калибратор (Н4-6);магазин сопротивлений (Р3026).

Используемые сокращения:

1.кр. – красный щуп тестера (полярность +), т.е. сигнальный щуп

2.чер. - черный щуп тестера (полярность -), т.е. корпусной щуп

3.четырехзначное число вида – показания тестера MY64 в режиме прозвонки

4.обозначения полевого транзистора: и – исток, с – сток, з – затвор, к – корпус

Некоторые советы перед ремонтом.

Если вы ремонтируете вольтметр впервые или испытываете некоторые трудности при ремонте, то советую полистать техническое описание. В нем довольно понятно описан принцип действия прибора и его функциональных узлов. Приведу только пару дополнительных аспектов.

Логика плат преобразования (платы 1 и 2): «0» = -13В, «1» = 0В.

Прозвонка полевого транзистора (с помощью тестера): и-с → ≈; кр. з – чер. и → ≈; чер.з – кр. и → ∞

С чего начать?

Итак, перед вам стоит нерабочий вольтметр В7-40 и вы полны энтузиазма и решимости сделать из груды металлолома превосходно работающий прибор. В первую очередь необходимо определить, какой функциональный узел неисправен. В упрощенной форме их 4: блок питания, входные устройства (защита, делители напряжения, преобразователи V~, I, R в V=), АЦП (элементы, преобразующие V= во временной интервал), блок управления (элементы, отвечающие за режим работы, выбор предела, индикацию).

Определим по внешним признакам, куда лезть в первую очередь.

Прибор не включается, индикаторы не светятся – смотрим наличие питающего напряжения +5В.

После включения на индикаторах застывшие показания – смотри блок управления (ФС «Удержание»)→ блок питания.

Прибор включился, но режим работы и пределы устанавливаются не корректно – блок питания → блок управления.

Прибор включился, режимы работы и пределы переключаются исправно, но показания на пределах 0,2V= и 2V= отличаются от значений входного напряжения – блок питания→АЦП→входные устройства→блок управления.

Вольтметр не измеряет (нулевые показания, искаженные показания, перегрузка) в режимах V~, I, R, V= >2В – входные устройства→ АЦП→ блок управления→блок питания.

Неисправности блока питания.

Неисправности цифрового стабилизатора.

1) При включении прибора не загораются индикаторы, не слышан писк стабилизатора.

Питание +5В закоротилось на корпус на плате блока сопряжения или КОП/ЦПУ. Чаще всего из-за деформации крышек или некачественного закрепления платы.

2) Отсутствует питание +5В.

Неисправен конденсатор С8;

Плохой контакт индуктивности L1;

Неисправна микросхема D1 142ЕП1 (без нагрузки питание составляет +4В, с нагрузкой - +0,7В).

3) Большие пульсации ≈1В.

Неисправен конденсатор С8.

Неисправности аналогового стабилизатора.

Неисправен преобразователь R→V=: пробиты стабилитрон VD10 и транзистор VT3 на плате 6.692.040.

2) Подсажены напряжения -15В до -13В, -13В до -11В.

Неисправен транзистор VT16 на плате 6.692.050.

3) Подсажено питание -13В (транзистор VT16 цел).

Неисправна цифровая микросхема (несколько/все) в аналоговой части.

Методика поиска неисправной микросхемы:

1.Отпаиваем ножки микросхем, соединяющие -13В и общий ┴.

2.Прозваниваем питание: кр. – -13В, чер. - ┴ →; чер. – -13В, кр. - ┴→∞.

3.Прозваниваем ножки микросхем -13В - ┴, у неисправной не будет ∞.

Неисправную микросхему можно запаять обратно и убедиться, что она подсаживает питание.

Общие сведения по поиску неисправностей АЦП.

В вольтметре В7-40 АЦП собран по схеме двойного интегрирования и работает в 3 шага. 1шаг – на конденсаторе С22 запоминается входное напряжение. 2 шаг – конденсатор С22 разряжается опорным напряжением. 3 шаг – коррекция нуля АЦП. Соответственно, необходимо определить на каком шаге происходит сбой. Для этого в приложении 6 часть 2 ТО приведены эпюры напряжений в контрольных точках.

Сначала убедимся, что не работает именно АЦП. Для этого закорачиваем вход /подаем постоянное напряжение и смотрим на 23 контакте «вх V=», какое входное напряжение поступает на АЦП. Если 0/поданное напряжение, а на табло другие числа, значит, неисправен АЦП. В противном случае – неисправность кроится во входных цепях. При сомнениях можно 23 контакт припаять к общему проводу.

Определили, что неисправность в АЦП. Теперь смотрим, есть ли на 8 контакте «T0» импульс прямого интегрирования. Если он отсутствует, то необходимо проанализировать прохождение данного сигнала через микросхемы.

С импульсом T0 все нормально, значит, проверяем опорное напряжение: КТ2 – -1В, КТ4 – -0,1В, КТ3 – +10В. Напряжения -1В и/или -0,1В могут незначительно отличаться от номинального из-за неисправных полевых транзисторов. Если неверны все 3 напряжения (причем существенно), то это явный признак неисправности источника опорного напряжения.

Опорное в норме, но прибор все равно «не дышит». Предлагаю мозговой штурм пока отложить и прозвонить полевые транзисторы на плате 6.692.040. Выпаивать не обязательно – ищем явно сдохшие. Для этого прозваниваем и-с (на обрыв) и з - и,с,к (на кз). Это, конечно, не стопроцентный вариант, но иногда помогает обнаружить неисправный элемент без тщательного анализа поломки.

Все еще не работает? Видимо, звезды на небе сошлись неблагоприятным образом и по гороскопу у вас сегодня неудачный день. Придется основательно покопаться в приборе и проанализировать работу цифровых микросхем. Для этого смотрим вход и выход микросхемы и анализируем полученные результаты. При сомнениях можно махнуть на рабочую микросхему. Советую для начала прочитать неисправности АЦП и неисправности блока управления.

Неисправности АЦП.

1) С прогревом резко увеличивается погрешность +V=.

Дефектный элемент D14.1 564ЛА9 на пл. 6.692.040.

2) Очень большая погрешность измерения -V=.

Неисправны транзисторы VT10, VT19 КП303Г на пл. 6.692.040.

3) Мельтешат показания последнего разряда на пределах 200 мV= и 20 V=.

Возбуждение АЦП, связанное с наводкой от импульсного блока питания +5В → замена С8.

В аналоговом блоке установлены платы 1987г с R47, которого нет в более новых приборах → закоротить R47.

4) Неправильное опорное напряжение.

Замена микросхем D1, D3, транзисторов VT1, VT20 на пл. 6.692.040.

5) Отсутствуют импульсы T0.

Неисправна микросхема D14 564ЛА9 на пл. 6.692.040.

6) Нет 0 при закороченном входе, искаженные показания при измерениях.

Неисправно питание.

7) Прибор начинает работать, если присоединить щуп осциллографа к КТ.

Неисправна микросхема D7 564ЛН2 на пл. 6.692.050 (обрыв 2 ножки в микросхеме).

8) Нет возможности выставить 0 при закороченном входе (показания плавают ±5 е.м.р.).

Неисправен транзистор VT23.

Немного об управлении.

Работа цифровой части вольтметра довольно подробно описана в ТО. К тому же поломку управляющей части приходилось ремонтировать не часто. Поэтому, если прибор не переключает режимы работы, не горят запятые и тому подобно, то находим элемент, отвечающий за интересующую нас функцию, и анализируем прохождение управляющего сигнала. Единственное, на что хочется обратить внимание так это формирователь сигналов «удержание». Штука не нужная, а проблемы создает. Если показания прибора застыли и не реагируют на манипуляции с прибором, то проверьте работу ФС «Удержание».

Неисправности, связанные с управлением.

1) Блокировка измерений при входном переменном напряжении ≥ 400В.

С помощью осциллографа наблюдаем на R61(пл. 6.692.050) импульсы соответствующей частоты поданного напряжения при увеличении входного напряжения. Добавляем емкость (≥22нФ) в точку соединения К13.2 и R61.

2) При включении прибора на табло индицируются показания отличные от 0 и не изменяются при дальнейших манипуляциях с прибором.

Залип геркон МКА-10501 в реле К13 на плате 6.692.050.

3) При нажатии кнопки переключения пределов «→» включается режим омметра.

Вход переключателя режима R плохо подвешен на питание +5В и питание 5В с пульсациями больше нормы.

4) Периодически (5-10 раз в день) самопроизвольно щелкает реле и высвечивается перегрузка.

Щелкает реле К10 → неисправна микросхема D11 564ТМ3 на плате 6.692.050.

5) Не переключаются пределы и режим работы.

Замена D18 133ЛН1 в блоке соединительном.

6) Не горят запятые.

Замена D32 134ИД6 в блоке соединительном.

7) Не щелкают реле при переключении режимов

Нет питания 6В

Питание 6В есть. Обрыв трансформатора Т3 → сигнал управления из цифровой части не поступал в аналоговую.

Входные преобразователи.

Принцип действия тут довольно прост. Входная физическая величина (V~, I=, I~, R) преобразуется в V=. Максимальное входное напряжение АЦП 2В, поэтому во входных цепях используются делители + защита. Итак, определили, какой из режимов не работает. Ищем в ТО элемент, на котором собран преобразователь. Подали на вход V~,/ I=,/ I~,/ R (можно закоротить) и анализируем, как происходит преобразование.

Неисправности входных преобразователей.

1) Измеряет V= после подачи напряжения со 2 раза.

Неисправны VT5, VT8 КП303Г пл. 6.692.050 (сдохли и-с).

2) Нет 0 при замкнутом входе.

На 23 контакте «вх U=» наблюдается напряжение -17мВ → неисправны VT5, VT8 КП303Г пл. 6.692.050.

3) На пределе 20V= нет 0 при закороченном входе (показания -4-10 е.м.р.).

1. Плохой контакт вывода 4 платы делителя напряжения.

4) Не измеряет R – перегрузка.

Неисправна микросхема D4 544УД1А. Проверяется следующим образом: прозванивается стабилитрон VD7 в обратку, если показания тестера отличны от [∞], то микросхема неисправна. Обычно микросхема горит не одна, поэтому следует проверить VD7, VD10, VT2, VT3, R35 пл. 6.692.040 и VT9, VT11, VD29, VD30 на пл. 6.692.050.

5) Искаженные показания при измерении R 1кОм на входе = 0,6кОм на индикаторе.

На вход подан 1кОм, смотрим преобразованное напряжение на R6 (пл. 6.692.050) → напряжение -1В, следовательно, омметр рабочий. На 23 контакте «вх U=» напряжение -0,6В → неисправна защита АЦП. В данном случае стабилитрон VD8.

6) Хаотические показания в режиме R.

Плохой контакт в реле К1.2 между 2 и 4 контактами. Обнаруживается следующим образом: снимается крышка с реле РВ-5А и аккуратно поджимается замыкающий контакт.

7) Долгое установление нулевых показаний R.

После установки 0 делаем обрыв, опять закорачиваем вход и наблюдаем долгую установку нулевых значений: неисправны защитные транзисторы VT9, VT11 (сдохли и-с) на плате 6.692.050.

8) Нет нулевых показаний при закороченном входе.

Неисправен VT13 пл. 6.692.040.

9) Погрешность на пределах 2 и 20 МОм > допуска.

1. Утечка транзистора VT11

2. Полудохлый конденсатор С14

3. Если после проверки элементов омметра неисправных элементов не обнаружено, то попробуйте просушить пл.6.692.040. Для этого устанавливаем настольную лампу над платой, так чтобы элементы прогревались хорошо и оставляем часа на 3. Если не помогло, значит, надо искать неисправный элемент и влага тут не причем.

10) Большая погрешность на пределе 20МОм (показания сильно занижены)

Погрешность на пределе 2МОм в норме. Если прибор оставить на некоторое время (~1-2 часа) на пределе 20 МОм, то погрешность выравнивается. При переключении на предел 2МОм и обратно вольтметр возвращается в нерабочее состояние. Следовательно, смотрим, что изменяется при переключении пределов. Мне пришлось выпаять все элементы, отвечающие за 2МОм, чтобы определить – неисправна микросхема D21 на плате 6.692.050.

11) Не хватает регулировки на пределе 20 кОм.

Неисправен образцовый резистор R78 988 кОм±0,1% (обычно >0,1%).

12) Не измеряет I.

1. Перегорел предохранитель по току/плохой контакт предохранителя с клеммой.

2. Проверьте шунт.

Заключение.

Конечно, я понимаю, что вольтметр В7-40 устаревший прибор и сейчас можно купить более качественную аппаратуру. Но надеюсь, что мои труды по написанию данной статьи не пропадут зря и кому-нибудь да пригодятся;)/> . Конец связи .

Амперметр, устанавливаемый на ряд автомобилей советского автопрома («Волга», «Москвич», УАЗ, ЛуАЗ), часто выходит из строя. Как восстановить его работоспособность?

Иногда амперметр перегревается и искажает показания. Бывает, от высокой температуры даже подплавляется пластмассовый корпус приборного щитка в месте крепления прибора, отчего его шкала перекашивается. Такое явление - следствие окисления винтов прибора там, где они контактируют с магнитопроводом. Изготовленные из разных материалов, эти детали со временем корродируют в точке запрессовки винтов со шлицевым посадочным местом, что сопровождается повышением электрического сопротивления и нагревом. Пайка помогает не всегда, поскольку магнитопровод может быть изготовлен из «непаяющегося» цинкового сплава. В таком случае можно обеспечить контакт с помощью шайбы и гайки небольшой высоты (см. фото внизу справа). В обход окислившихся поверхностей ток пойдет через шайбу и гайку.

Иногда в амперметре заклинивает или, наоборот, начинает непрерывно колебаться стрелка. Это значит, что нужно уделить внимание опорам ее оси. Засорившиеся втулки нужно очистить, а загустевшую демпфирующую смазку типа ПМС - заменить. Ее можно поискать в лабораториях контрольно-измерительных приборов (КИП) на промышленных предприятиях. В качестве альтернативы для смазки оси подойдет «Литол».

Если после выключения зажигания стрелка не возвращается на ноль, значит, она или якорь прибора провернулись на оси. В этом случае стрелку нужно подогнуть, чтобы она вернулась в исходное положение.

Постоянные отклонения показаний прибора в одну сторону (завышения или занижения) свидетельствуют об изменении характеристик постоянного магнита. В таком случае прибор подлежит замене. Кстати, приступая к ремонту амперметра, следует убедиться, что используемые стальные инструменты не намагничены. Описанным способом можно устранить большинство неисправностей других контрольных приборов.

Ремонт электрической части магнитоэлектрических амперметров и вольтметров

Под таким ремонтом понимается выполнение регулировок, преимущественно в электрических цепях измерительного прибора, в результате которых его показания оказываются в пределах заданного класса точности.

При необходимости регулировку осуществляют одним или несколькими способами:

  • · изменением активного сопротивления в последовательных и параллельных электрических цепях измерительного прибора;
  • · изменением рабочего магнитного потока через рамку посредством перестановки магнитного шунта или намагничиванием (размагничиванием) постоянного магнита;
  • · изменением противодействующего момента.

В общем случае вначале добиваются установки указателя в положение, соответствующее верхнему пределу измерений при номинальном значении измеряемой величины. Когда такое соответствие достигнуто, поверяют измерительный прибор на числовых отметках и записывают погрешность измерения на этих отметках.

Если погрешность превышает допускаемую, то выясняют, нельзя ли путем регулировки преднамеренно внести допускаемую погрешность на конечной отметке диапазона измерений, с тем чтобы погрешности на других числовых отметках «уложились» в допускаемые пределы.

В тех случаях, когда такая операция не дает нужных результатов, заново производят градуировку прибора с перечерчиванием шкалы. Обычно это имеет место после капитального ремонта измерительного прибора.

Регулировку магнитоэлектрических приборов выполняют при питании постоянным током, а характер регулировок устанавливают в зависимости от конструкции и назначения прибора.

По назначению и конструкции магнитоэлектрические приборы делятся на следующие основные группы:

  • · вольтметры с указанным на циферблате номинальным внутренним сопротивлением,
  • · вольтметры, у которых внутреннее сопротивление не указано на циферблате;
  • · амперметры однопредельные с внутренним шунтом;
  • · амперметры многопредельные с универсальным шунтом;
  • · милливольтметры без устройства температурной компенсации;
  • · милливольтметры с устройством температурной компенсации.

Регулировка вольтметров, у которых на циферблате указано номинальное внутреннее сопротивление

Вольтметр включают в последовательную цепь по схеме включения миллиамперметра и регулируют так, чтобы получить при номинальном токе отклонение указателя на конечную числовую отметку диапазона измерений. Номинальный ток вычисляют как частное от деления номинального напряжения на номинальное внутреннее сопротивление.

При этом регулировку отклонения указателя на конечную числовую отметку выполняют либо изменением положения магнитного шунта, либо заменой спиральных пружинок, либо изменением сопротивления шунта, параллельного рамке, если таковое имеется.

Магнитный шунт в общем случае отводит через себя до 10% магнитного потока, текущего через междужелезное пространство, причем перемещение этого шунта в сторону перекрывания полюсных наконечников приводит к уменьшению магнитного потока в междужелезном пространстве и, соответственно, к уменьшению угла отклонения указателя.

Спиральные пружинки (растяжки) в электроизмерительных приборах служат, во-первых, для подвода и отвода тока от рамки и, во-вторых, для создания момента, противодействующего повороту рамки. При повороте рамки одна из пружинок закручивается, а вторая раскручивается, в связи с чем создается суммарный противодействующий момент пружинок.

Если необходимо уменьшить угол отклонения указателя, то следует поменять имеющиеся в приборе спиральные пружинки (растяжки) на более «сильные», т. е. установить пружинки с повышенным противодействующим моментом.

Этот вид регулировки часто относят к нежелательному, так как он связан с кропотливой работой по замене пружинок. Однако ремонтники, имеющие большой опыт в перепайке спиральных пружинок (растяжек), предпочитают именно этот способ. Дело в том, что при регулировке изменением положения пластинки магнитного шунта в любом случае она в результате оказывается смещенной к краю и отпадает возможность в дальнейшем перемещением магнитного шунта корректировать показания прибора, нарушаемые старением магнита.

Изменение сопротивления резистора, шунтирующего цепь рамки с добавочным сопротивлением, можно допустить лишь как крайнюю меру, так как такое разветвление тока обычно используется в устройствах температурной компенсации. Естественно, что любое изменение указанного сопротивления будет нарушать температурную компенсацию и в крайнем случае может быть допущено лишь в небольших пределах. Нельзя также забывать, что изменение сопротивления этого резистора, связанное с удалением или с добавлением витков проволоки, должно сопровождаться длительной, но обязательной операцией старения манганиновой проволоки.

С целью сохранения номинального внутреннего сопротивления вольтметра любые изменения сопротивления шунтирующего резистора должны сопровождаться изменением добавочного сопротивления, что еще больше затрудняет регулировку и делает нежелательным применение этого способа.

Регулировка вольтметров, у которых внутреннее сопротивление не указано на циферблате

Вольтметр включают, как обычно, параллельно измеряемой электрической цепи и регулируют, чтобы получить отклонение указателя на конечную числовую отметку диапазона измерений при номинальном напряжении для данного предела измерений. Регулировку выполняют изменением положения пластинки при перемещении магнитного шунта, или же посредством изменения добавочного сопротивления, или путем замены спиральных пружинок (растяжек). Все замечания, сделанные выше, справедливы и в данном случае.

Часто вся электрическая цепь внутри вольтметра -- рамка и проволочные резисторы -- оказывается сгоревшей. При ремонте такого вольтметра вначале удаляют все сгоревшие части, затем тщательно чистят все оставшиеся несгоревшие части, устанавливают новую подвижную часть, замыкают накоротко рамку, уравновешивают подвижную часть, размыкают рамку и, включив прибор по схеме миллиамперметра, т. е. последовательно с образцовым миллиамперметром, определяют ток полного отклонения подвижной части, изготовляют резистор с добавочным сопротивлением, при необходимости намагничивают магнит и в заключение собирают прибор.

Регулировка однопредельных амперметров с внутренним шунтом

При этом может быть два случая ремонтных операций:

  • 1) имеется неповрежденный внутренний шунт, и требуется, заменив резистор при той же рамке перейти на новый предел измерений, т. е. заново градуировать ампер метр;
  • 2) при капитальном ремонте амперметра была заменена рамка, в связи с чем изменились параметры подвижной части, необходимо рассчитать, изготовить новый и заменить старый резистор с добавочным сопротивлением.

В обоих случаях вначале определяют ток полного отклонения рамки прибора, для чего заменяют резистор на магазин сопротивления и, пользуясь лабораторным или переносным потенциометром, компенсационным методом измеряют сопротивление и ток полного отклонения рамки. Таким же путем измеряют сопротивление шунта.

Регулировка многопредельных амперметров с внутренним шунтом

В этом случае в амперметр устанавливают так называемый универсальный шунт, т. е. шунт, который в зависимости от выбранного верхнего предела измерений подключают параллельно рамке и резистору с добавочным сопротивлением целиком или частью от полного сопротивления.

Например, шунт в трехпредельном амперметре состоит из трех последовательно включенных резисторов Rb R2 и R3. Допустим, амперметр может иметь любой из трех пределов измерений -- 5, 10 или 15 А. Шунт включается последовательно в измерительную электрическую цепь. В приборе имеется общий зажим « + », к которому подключен вход резистора R3, являющегося шунтом на пределе измерений 15 А; к выходу резистора R3 последовательно включены резисторы R2 и Rx.

При подключении электрической цепи к зажимам, обозначенным « + » и «5 А», на рамку через резистор Rдоб снимается напряжение с последовательно включенных резисторов Rх, R2 и R3, т. е. полностью со всего шунта. При подключении электрической цепи к зажимам « + » и «10 А» напряжение снимается с последовательно включенных резисторов R2 и R3 и при этом резистор Rx оказывается включенным последовательно в цепь резистора Rдоб, при подключении к зажимам « + » и «15 А» напряжение в цепь рамки снимается с резистора R3, а резисторы R2 и Rх оказываются включенными в цепь Rдоб.

При ремонте такого амперметра возможны два случая:

  • 1) пределы измерений и сопротивление шунта не изменяются, но в связи с заменой рамки или дефектного резистора нужно рассчитать, изготовить и установить новый резистор;
  • 2) производится градуировка амперметра, т. е. изменяются его пределы измерений, в связи с чем нужно рас считать, изготовить и установить новые резисторы, после чего произвести регулировку прибора.

В случае крайней необходимости, что бывает при наличии высокоомных рамок, когда температурная компенсация нужна, применяют схему с температурной компенсапией посредством резистора или терморезистора. Прибор поверяют на всех пределах, причем при правильной подгонке первого предела измерений и правильном изготовлении шунта дополнительных регулировок обычно не требуется.

Регулировка милливольтметров, не имеющих устройств специальной температурной компенсации

В магнитоэлектрическом приборе имеются рамка, намотанная из медной проволоки, и спиральные пружинки, изготовленные из оловянноцинковой бронзы или из фосфористой бронзы, электрическое сопротивление которых зависит от температуры воздуха внутри корпуса прибора: чем выше температура, тем больше сопротивление.

Учитывая, что температурный коэффициент оловянноцинковой бронзы довольно мал (0,01), а манганиновой проволоки, из которой изготовлен добавочный резистор, близок к нулю, приближенно полагают температурный коэффициент магнитоэлектрического прибора:

Х пр = Хр (Rр / Rр + R доб)

амперметр вольтметр измерительный

где Х р -- температурный коэффициент рамки из медной проволоки, равный 0,04 (4%). Из уравнения следует, что для уменьшения влияния на показания прибора отклонений температуры воздуха внутри корпуса от ее номинального значения добавочное сопротивление должно быть в несколько раз больше сопротивления рамки. Зависимость отношения добавочного сопротивления к сопротивлению рамки от класса точности прибора имеет вид

R доб /R р = (4 - К / К)

где К -- класс точности измерительного прибора.

Из этого уравнения следует, что, например, для приборов класса точности 1,0 добавочное сопротивление должно быть в три раза больше сопротивления рамки, а для класса точности 0,5 -- уже в семь раз больше. Это приводит к уменьшению полезно используемого напряжения на рамке, а в амперметрах с шунтами -- к увеличению напряжения на шунтах. Первое вызывает ухудшение характеристик прибора, а второе -- увеличение потребляемой мощности шунта. Очевидно, использование милливольтметров, не имеющих устройств специальной температурной компенсации, целесообразно только для щитовых приборов классов точности 1,5 и 2,5.

Регулировку показаний измерительного прибора выполняют путем подбора добавочного сопротивления, а также изменением положения магнитного шунта. Опытные ремонтники применяют также подмагничивание постоянного магнита прибора. При регулировке включают входящие в комплект измерительного прибора соединительные провода или учитывают их сопротивление посредством подключения к милливольтметру магазина сопротивления с соответствующим значением сопротивления. При ремонте иногда прибегают к замене спиральных пружинок.

Регулировка милливольтметров, имеющих устройство температурной компенсации

Устройство температурной компенсации позволяет увеличить падение напряжения на рамке, не прибегая к существенному увеличению добавочного сопротивления и потребляемой мощности шунта, что резко улучшает качественные характеристики однопредельных и многопредельных милливольтметров классов точности 0,2 и 0,5, используемых, например, в качестве амперметров с шунтом. При неизменном напряжении на зажимах милливольтметра погрешность измерения прибора от изменения температуры воздуха внутри корпуса практически может приближаться к нулю, т. е. быть настолько малой, что с ней можно не считаться и не учитывать.

Если при ремонте милливольтметра обнаружится, что в нем отсутствует устройство температурной компенсации, то для улучшения характеристик прибора такое устройство может быть установлено в прибор.



Статьи по теме