Устройство и установка трансформаторов тока. Измерительные трансформаторы тока, принцип работы

В процессе использования энергетических систем нередко бывают случаи, когда нужно превратить какие-то электрические величины в их аналоги, при этом показатели нужно соответственно изменить в нужном соотношении, для чего обычно применяется трансформатор тока . С помощью трансформатора тока можно смоделировать некоторые процессы в электрических установках, а также сделать измерительный процесс более безопасным.

Функционирование трансформатора тока базируется на законе электромагнитной индукции . Данный закон работает в электрических и магнитных полях, которые изменяются по форме гармоник переменных синусоидальных величин.

Трансформатор тока превращает начальное значение вектора тока, который течет в силовой цепи, в конечное, меньшее по величине, при этом выдерживается нужное соотношение значения по модулю и сохраняется точная величина угла.

Как устроен трансформатор тока?

На следующем рисунке схематично обозначены процессы, протекающие в трансформаторе тока при превращении электроэнергии.

По первичной силовой обмотке с количеством витков ω1 течет ток I1, при этом он преодолевает ее полное сопротивление Z1. Вокруг катушки возникает магнитный поток Ф1, он фиксируется с помощью магнитопровода, находящегося перпендикулярно по отношению к вектору I1. Подобный способ расположения позволяет превращать электрическую энергию в магнитную с наименьшими потерями.

При пересечении перпендикулярных витков обмотки ω2 поток Ф1 создает в них электродвижущую силу Е2, под ее действием во вторичной обмотке появляется ток I2, который преодолевает полное сопротивление катушки Z2 и подсоединенной на выходе нагрузки Zн. В процессе напряжение U2 на зажимах вторичной цепи падает.

Коэффициент трансформации К1, можно посчитать, разделив вектор I1 на вектор I2. Это один из основных параметров трансформаторов тока , он определяется прежде, чем начинают проектировать устройство, а в действующих трансформаторах его измеряют. Однако, как и при работе любых приборов, реальные показания отличаются от теоретических. Для учета таких погрешностей существует специальная метрологическая характеристика, или класс точности трансформатора тока.

В отличие от расчетов, при работе трансформатора тока в жизни величины токов в обмотках не являются константами, так что коэффициент трансформации рассчитывают по номиналам. К примеру, если коэффициент трансформации равен 1000/5, то это значит, что в первичном витке течет ток величиной 1 кА, а во вторичных действует нагрузка 5 А. Исходя из данных величин, можно понять, как долго трансформатор тока прослужит.

Магнитный поток Ф2, возникающий благодаря вторичному току I2, понижает величину потока Ф1 в магнитопроводе. В процессе возникающий поток трансформатора Фт рассчитывается как геометрическая сумма векторов Ф1 и Ф2.

Где и как используют трансформаторы тока?

Самые разные виды трансформаторов тока применяются в электронных устройствах, начиная от небольших и заканчивая приборами размером в несколько метров. Обычно их классифицируют по признакам эксплуатации.

Классификация трансформаторов тока :

По предназначению:

  • для измерений (с их помощью на измерительные устройства подается электрический ток);
  • для защиты (их подключают к цепям защит);
  • для лабораторных применений (такие трансформаторы тока имеют большой класс точности);
  • для повторных преобразований (промежуточные).

В работе объектов используют следующие трансформаторы тока:

  • для внешнего монтажа (на улице);
  • для внутреннего монтажа (для закрытых установок);
  • вмонтированные внутрь корпуса прибора;
  • накладные (их надевают на проходной изолятор);
  • переносные (для проведения измерений в различных местах).

По значению рабочего напряжения оборудования трансформаторы тока делятся на:

  • высоковольтные (обладающие напряжением свыше 1000 В);
  • с номинальным напряжением не более 1 кВ.

Существуют и другие деления трансформаторов тока на виды, в том числе по способу материалов для изоляции , по числу ступеней трансформации и другим характеристикам.

Для чего нужны трансформаторы тока?

Чаще всего трансформаторы тока используют в цепях учета измерения электроэнергии, для замеров и защит линий или силовых автотрансформаторов обычно применяют переносные трансформаторы тока.

На следующем изображении приведено расположение трансформаторов тока для каждой фазы линии и монтаж вторичных цепей в клеммном ящике на ОРУ-110 кВ для силового автотрансформатора.

Таким же целям служат трансформаторы тока на ОРУ-330 кВ, однако они гораздо больших размеров из-за сложностей конструкции, так как они предназначены для более высоковольтного оборудования.

На энергетическом оборудовании нередко используют встроенные конструкции трансформаторов тока , их помещают непосредственно на корпусе силового объекта.

Их конструкция предполагает вторичные обмотки с выводами, которые находятся вокруг высоковольтного ввода в герметичном корпусе. Кабели от зажимов трансформатора тока подведены к закрепленным тут же клеммным ящикам.


В трансформаторах тока , характеризующихся высоким напряжением , обычно как изолятор применяют трансформаторное масло. На следующем изображении показан вариант такой конструкции для трансформаторов тока серии ТФЗМ для работы при напряжении, равном 35 кВ.


При напряжениях, не превышающих 10 кВ, в целях изоляции между обмотками при производстве корпуса прибора, применяют твердые диэлектрические материалы.

Например, трансформатор тока марки ТПЛ-10, используемый в КРУН, ЗРУ и других видах распределительных устройств.


На следующей упрощенной схеме показан пример подключения вторичной токовой цепи одного из кернов защит REL 511 для выключателя линии 110 кВ.


Как понять, что трансформатор тока испорчен, и найти неисправности?

Когда трансформатор тока находится под нагрузкой, у него может быть нарушено электрическое сопротивление изоляции обмоток или их проводимость. Это происходит из-за воздействия теплового перегрева, нанесенных случайным образом механических повреждений или неправильной сборки.

В процессе работы трансформатора тока вероятнее всего возникновение проблем с изоляцией, в результате чего случаются замыкания обмоток между витками и понижение передаваемой мощности. Также из-за этого может произойти утечка через случайно созданные цепи, что, в свою очередь, может закончиться коротким замыканием.

Для того, чтобы обнаружить точки, в которых конструкция была собрана неправильно, трансформатор тока необходимо регулярно проверять с помощью тепловизора. Тогда будет возможно вовремя обнаружить и исправить дефекты в виде, например, нарушенных контактов, и снизить перегрев устройства.

На предмет отсутствия межвитковых замыканий приборы проверяют специалисты лабораторий РЗА с помощью:

  • снятия вольтамперной характеристики;
  • прогрузки трансформатора тока от постороннего источника;
  • замеров основных характеристик прибора в рабочей схеме.

Они же проводят анализ величину коэффициента трансформации.

При всех работах замеряется отношение между векторами первичных и вторичных токов по величине. Их угловые отклонения в данном случае не замеряют, так как высокоточных фазоизмерительных устройств для проверки трансформаторов тока в метрологических лабораториях не существует.

Высоковольтные испытания диэлектрических свойств проводятся специалистами лаборатории службы изоляции.

Основной задачей трансформатора тока является преобразование тока до такой величины, при которой будет удобно проводить измерения. С его помощью осуществляется питание токовых цепей приборов учёта и контроля, а также РЗА. Он позволяет отделить низковольтные измерительные приборы, которые подключены к вторичной обмотке, от большого напряжения. Это позволяет обезопасить их обслуживание работающим персоналом.

Измерительный ТТ

При помощи данного агрегата можно подсоединять всевозможные устройства вдали от тех областей, в которых присутствует большое напряжение, а также осуществлять контроль и измерение величины тока. К вторичным обмоткам трансформатора можно подключать различные измерительные приборы: токовые реле и обмотки приборов, амперметры. При подсоединении нескольких таких измерительных устройств к ТТ, их нужно подключать параллельно, для того чтобы могла образоваться одна неразрывная цепь.

Для проверки соответствия всех параметров необходимо производить испытание трансформаторов тока , которое позволит предотвратить внезапный отказ оборудования. Что необходимо делать, рассмотрим далее.

Порядок проведения работ при измерениях

  • Отключить трансформатор и принять все необходимые меры, чтобы не поступало напряжение к месту работы;
  • проверить, есть ли напряжение на всех токоведущих частях;
  • на приборах, которые отвечают за подачу напряжения, прикрепить табличку: «Не включать! Работают люди!»;отсоединить все шины, идущие до трансформатора, и заземлить;
  • все необходимые измерения осуществляются согласно установленным программам и методике.

Класс точности

В зависимости от величины погрешности классы точности измерительных трансформаторов тока бывают следующих типов: 0,2; 0,5; 1; 3 и 10. Данная величина обозначает, что ток в первичной обмотке соответствует номинальному значению, а нагрузка вторичной не выходит за пределы того показателя, который определён нормативными документами. Опираясь на класс точности, используют на практике соответствующие приборы.

Измерительный трансформатор тока, принцип действия

Основные узлы данного устройства - это его обмотки и магнитопровод. В контролируемую сеть, при помощи последовательного соединения прикрепляется первичная обмотка. Она должна обладать маленьким значением сопротивления. Это позволит предотвратить снижение на ней напряжения. К вторичной же обмотке подсоединяются измерительные приборы. Такая особенность режима работы трансформатора схожа с режимом «КЗ».

Может быть, кто-то думает, что трансформатор – это что-то среднее между трансформером и терминатором. Данная статья призвана разрушить подобные представления.

Трансформатор – статическое электромагнитное устройство, предназначенное для преобразования переменного электрического тока одного напряжения и определенной частоты в электрический ток другого напряжения и той же частоты.

Назначение трансформаторов

Разные виды трансформаторов используются практически во всех схемах питания электрических приборов и при передаче электроэнергии на большие расстояния.

Электростанции вырабатывают ток относительно небольшого напряжения – 220 , 380 , 660 В. Трансформаторы, повышая напряжение до значений порядка тысяч киловольт, позволяют существенно снизить потери при передаче электроэнергии на расстояния, а заодно и уменьшить площадь сечения проводов ЛЭП.

Гигантский трансформатор

Непосредственно перед тем как попасть к потребителю (например, в обычную домашнюю розетку), ток проходит через понижающий трансформатор, и мы получаем привычные нам 220 Вольт.

Самый распространенный вид трансформаторов – силовые трансформаторы . Они предназначены для преобразования напряжения в электрических цепях. Помимо силовых трансформаторов в различных электронных приборах применяются:

  • импульсные трансформаторы;
  • силовые трансформаторы;
  • трансформаторы тока.

Принцип работы трансформатора

Трансформаторы бывают однофазные и многофазные, с одной, двумя или большим количеством обмоток. Рассмотрим схему и принцип работы трансформатора на примере простейшего однофазного трансформатора.

Работа любого трансформатора основана на явлении , открытое Фарадеем. Из чего состоит трансформатор? Во простейшем случае из одного металлического сердечника и двух обмоток . Обмотки электрически не связаны одна с другой и представляют собой изолированные провода. Одна обмотка (ее называют первичной) подключается к источнику переменного тока. Вторая обмотка, называемая вторичной, подключается к конечному потребителю тока.


Принцип устройства трансформатора

Когда трансформатор подключен к источнику переменного тока, в витках его первичной обмотки течет переменный ток величиной I1 . При этом образуется магнитный поток Ф , который пронизывает обе обмотки и индуцирует в них ЭДС.

Бывает, что вторичная обмотка не находится под нагрузкой. Такой режимы работы трансформатора называется режимом холостого хода. Соответственно, если вторичная обмотка подключена к какому-либо потребителю, по ней течет ток I2 , возникающий под действием ЭДС.

Величина ЭДС, возникающей в обмотках, напрямую зависит от числа витков каждой обмотки. Отношение ЭДС, индуцированных в первичной и вторичной обмотках, называется коэффициентом трансформации и равно отношению количества витков соответствующих обмоток.

Путем подбора числа витков на обмотках можно увеличивать или уменьшать напряжение на потребителе тока с вторичной обмотки.

Идеальный трансформатор

Идеальный трансформатор – трансформатор, в котором отсутствуют потери энергии. В таком трансформаторе энергия тока в первичной обмотке полностью преобразуется сначала в энергию магнитного поля, а далее – в энергию вторичной обмотки. Конечно, такого трансформатора не существует в природе. Тем не менее, в случае, когда теплопотерями можно пренебречь, имеет место формула, согласно которой мощности тока в первичной и вторичной обмотках равны.


Кстати! Для наших читателей сейчас действует скидка 10% на

Потери энергии в трансформаторе

Коэффициент полезного действия трансформаторов достаточно высок. Тем не менее, в обмотке и сердечнике происходят потери энергии, приводящие к тому, что температура при работе трансформатора повышается. Для трансформаторов небольшой мощности это не представляет проблемы, и все тепло уходит в окружающую среду – используется естественное воздушное охлаждение. Такие трансформаторы называют сухими.

В более мощных трансформаторах воздушного охлаждения оказывается недостаточно, и применяется охлаждение маслом. В этом случае трансформатор помещается в бак с минеральным маслом, через которое тепло передается стенкам бака и рассеивается в окружающую среду. В трансформаторах высоких мощностей дополнительно применяются выхлопные трубы – если масло закипает, образовавшимся газам нужен выход.


Сухие трансформаторы серии ТСЛ

Конечно, трансформаторы не так просты, как может показаться на первый взгляд — ведь мы рассмотрели принцип действия трансформатора кратко. Контрольная по электротехнике с задачами на расчет трансформатора внезапно может стать настоящей проблемой. всегда готовы оказать помощь в решении любых студенческих проблем с учебой! Обращайтесь в Zaochnik и учитесь легко!

1.3 Принцип работы
Трансформатор тока состоит из замкнутого сердечника, набранного из тонких листов электротехнической стали, и двух обмоток - первичной и вторичной. Первичную обмотку включают последовательно в контролируемую цепь, ко вторичной обмотке присоединяют токовые катушки различных приборов и реле.

Рисунок 1 – Трансформатор тока:
а - устройство, б, в - схемы включения амперметра непосредственно в контролирующую цепь и через трансформатор тока
Устройство трансформатора тока и схемы включения амперметра показаны на рисунке 1, а-в. Магнитный поток в магнитопроводе 3 создается токами первичной 1 и вторичной 2 обмоток. Соотношение первичного I1 и вторичного I2 токов определяется формулой:
KТТ = I1/I2 = w2/wl ,
где KТТ - коэффициент трансформации; w1 и w2 - число витков первичной и вторичной обмоток.
Если в силовых трансформаторах и трансформаторах напряжения увеличение сопротивления во вторичной цепи вызывает уменьшение тока во вторичной и в первичной цепях, а напряжение на выводах обеих обмоток почти не изменяется, то у трансформаторов тока увеличение сопротивления во вторичной цепи приводит к повышению напряжения на выводах вторичной обмотки. Это объясняется тем, что ток в первичной цепи не зависит от нагрузки трансформатора тока. Ток во вторичной цепи трансформатора тока практически не меняется с изменением ее сопротивления при данном режиме первичной цепи. Вследствие этого нагрузка трансформатора тока увеличивается с возрастанием сопротивления во вторичной цепи, складывающегося из сопротивлений, подключенных к трансформатору тока аппаратов и приборов, соединительных проводов и переходных контактов.
Трансформаторы тока для электроустановок напряжением до 1000 В показаны на рисунке 2, а, б, в (катушечный, шинный ТШ-0,5 и шинный с литой изоляцией ТШЛ-0,5). В шинных трансформаторах тока в качестве первичной обмотки используют шину, пропускаемую через окно 5 сердечника трансформатора тока, на который намотана вторичная обмотка.
Проходные трансформаторы тока для внутренней установки на напряжение 10 кВ выполняют многовитковыми, одновитковыми и шинными с фарфоровой и пластмассовой (литой) изоляцией (Рисунок 3, а-в).
Опорный трансформатор тока ТФНД-220 для наружной установки на напряжение 220 кВ (Рисунок 4) имеет обмотки, помещенные в фарфоровый корпус 3, залитый маслом и укрепленный на основании 4. На верхнем торце фарфорового корпуса укреплен чугунный расширитель 1 для масла с маслоуказателем и зажимами 2 первичной обмотки. Сердечник с вторичной обмоткой охватывается первичной обмоткой, имеющей в этом месте форму кольца. Выводы вторичной обмотки размещены в коробке 5 на основании трансформатора.



Рисунок 2 – Трансформаторы тока на напряжение до 1000 В:
а - катушечный, б, в - шинные ТШ-0,5 и ТШЛ-0,5; 1 - каркас, 2, 4 - зажимы вторичной и первичной обмоток, 3 - защитный кожух, 5 - окно


Рисунок 3 – Трансформаторы тока на напряжение 10 кВ с литой изоляцией:
а - многовитковый ТПЛ-10, б - одновитковый ТПОЛ-10, в -шинный ТПШЛ-10; 1, 2 - зажимы первичной и вторичной обмоток, 3 - литая изоляция, 4 - установочный угольник, 5 - сердечник


Рисунок 4 – Опорный трансформатор тока ТФНД-220 наружной установки
В высоковольтных распределительных устройствах подстанций применяют проходные (Рисунок 5, а) и опорные (Рисунок 5, б) трансформаторы тока.

Рисунок 5 – Трансформаторы тока:
а - проходной ТПФМ-10 на 10 кВ, б - опорный ТФН-35М на 35 кВ; 1 и 3 - первичная и вторичная обмотки, 2 - фарфоровый изолятор, 4 - сердечник вторичной обмотки, 5 - контактный угольник, 6 - крышка, 7 - кожух, 8 - верхний фланец, 9 - зажимы выводов вторичной обмотки, 10 - якореобразный болт, 11 - крышка, 12 - фарфоровая покрышка, 13 - изоляционное масло, 14 - кольцевые обмотки («восьмеркой»), 15 - полухомут, 16 - масловыпускатель, 17 - цоколь, 18 - коробка вторичных выводов, 19 - кабельная муфта, 20 - маслоуказатель

Что такое трансформатор тока

Трансформатор тока очень интересная и важная тема в электротехнике. Здравствуй, дорогой читатель. Постараюсь доходчиво и подробно рассказать, что такое трансформатор тока, описать его конструкцию и для чего он нужен.

Сильно не заморачивайтесь, трансформатор тока —такой же трансформатор, как и все другие, в основном. Я бы назвал трансформатор тока измерительным трансформатором. Почему измерительным, спросите вы. Отвечаю: все, кто хоть мало-мальски разбирается в основах электротехники или электромонтажа, сталкивался с амперметром (измерительный прибор, показывающий силу тока). Так вот, им вы можете померить маленькие токи по значению. А если мне нужно узнать силу тока, которая больше 600 А? Что делать? Для этого и нужен трансформатор тока. Он понизит большой ток до нужного амперметру значения. В принципе, трансформатор тока, только этим и занимается — он помощник амперметра в измерении силы тока.

Устройство трансформатора тока

Как я уже говорил выше, трансформатор тока — обычный трансформатор, сердечник и две обмотки, первичная и вторичная. Первичную обмотку, которая содержит небольшое количество витков, включают последовательно в цепь, у которой необходимо измерить ток, а к вторичной, с большим числом витков, подключают амперметр. Так как сопротивление амперметра маленькое, я думаю, что трансформатор тока работает в режиме , при котором сумма магнитных потоков равна разности потоков, созданных первичной и вторичной обмотками.

Принцип работы

Измеряемый ток, протекая по первичной обмотке с маленьким сопротивлением, мы уже знаем, на первичной мало витков, создает на ней небольшое падение напряжения, которое трансформируется во вторичную обмотку. Поскольку число витков вторичной обмотки значительно больше, чем у первичной, то на ней получается большее напряжение при меньшем токе. Чем больше ток, тем меньше напряжение и наоборот.

Применение

Мы уже знаем, что трансформатор тока это друг амперметра, они вместе показывают нам силу тока. Однако, его также можно применить для включения токовых обмоток ваттметров (мощность) и некоторых других приборов. Выводы обмоток трансформатора тока маркируют таким образом: первичная обмотка — Л1 и Л2 (линия), вторичная — И1 и И2 (измеритель).

Совет напоследок: вторичную обмотку работающего трансформатора тока не размыкайте. Она всегда должна быть замкнута на прибор или закоротите. Почему так надо делать? При разомкнутом состоянии, образуется большой магнитный поток, который создаст на вторичной трансформатора тока высокое напряжение, опасное для жизни.

Ну вот, в принципе, всё, что сегодня я хотел вам поведать об одном из приборов электротехники. Статью дополнили информацией о подключении трансформатора тока . Много полезного, связанного с электромонтажными работами и электротехникой вы можете найти на . Пишите комментарии, всего доброго.



Статьи по теме