Сопротивление обмотки силового трансформатора. Контроль состояния изоляции трансформаторов

1. Определение условий включения трансформатора. Следует производить в соответствии с инструкцией «Трансформаторы силовые. Транспортирование, разгрузка, хранение, монтаж и ввод в эксплуатацию» (РД 16. 363 - 87).

2. Измерение характеристик изоляции. Допустимые значения сопротивления изоляции R 60 , коэффициент абсорбции R 60 /R 15 , тангенс угла диэлектрических потерь и отношения C 2 /C 50 и?C/C регламентируется по п. 1

3. Испытания повышенным напряжением промышленной частоты:

· изоляции обмоток вместе с вводами. Испытательные напряжения приведены в таблице 5. Продолжительность приложения нормированного напряжения - 1 минута.

Испытание повышенным напряжением промышленной частоты изоляции обмоток маслонаполненных трансформаторов при вводе в эксплуатацию не обязательно.

Испытание повышенным напряжением промышленной частоты изоляции обмоток сухих трансформаторов и производится по нормам таблицы 5 для аппаратов с облегченной изоляцией.

Импортные трансформаторы разрешается испытывать напряжениями, указанными в таблице 5, лишь в тех случаях, если они не превышают напряжения, которым трансформатор был испытан на заводе.

Изоляция импортных трансформаторов, которую поставщик испытал напряжением ниже указанного в ГОСТ 18472 - 88, испытывается напряжением, значение которого устанавливается в каждом случае особо.

Изоляция линейного вывода обмотки трансформаторов классов напряжения 110кВ и выше, имеющих неполную изоляцию нейтрали (испытательное напряжение - 85 и 100кВ), испытывается только индуктивным напряжением, а изоляция нейтрали - приложенным напряжением;

Изоляция доступных стяжных шпилек, прессующих колец и ярмовых балок. Испытание следует производить в случае осмотра активной части. Испытательное напряжение - 1-2кВ. Продолжительность приложения нормированного испытательного напряжения - 1 минута.

4. Измерение сопротивления обмоток постоянному току. Производится на всех ответвлениях, если для этого не требуется выемка сердечника. Сопротивление должно отличаться не более чем на 2% от значений, полученных на том же ответвлении других фаз, или от данных завода-изготовителя.

Таблица 5

5. Проверка коэффициента трансформации. Производится на всех ступенях переключения. Коэффициент трансформации должен отличаться не более чем на 2% от значений, полученных на том же ответвлении на других фазах, или от данных завода-изготовителя. Для трансформаторов с РПН разница между коэффициентами трансформации не должна превышать значения степени регулирования.

6. Проверка группы соединения трехфазных трансформаторов и полярности выводов однофазных трансформаторов. Производится при монтаже, если отсутствуют паспортные данные или есть сомнения в достоверности этих данных. Группа соединений должна соответствовать паспортным данным и обозначениям на щитке.

7. Измерение тока и потерь холостого тока. Производится одно из измерений, указанных ниже:

· при номинальном напряжении. Измеряется ток холостого тока. Значение тока не нормируется;

· при малом напряжении. Измерение производится с приведением потерь к номинальному напряжению или без приведения (метод сравнения).

8. Проверка работы переключающего устройства и снятия круговой диаграммы. Снятие круговой диаграммы следует производится на всех положениях переключателя. Круговая диаграмма не должна отличаться от снятой на заводе-изготовителе. Проверку срабатывания переключающего устройства и давления контактов следует производить согласно заводским инструкциям.

9. Испытание бака с радиаторами гидравлическим давлением. Производится гидравлическим давлением столба масла, высота которого над уровнем заполненного расширителя принимается: для трубчатых и гладких баков - 0, 6м; для боков волнистых, радиаторных или с охладителями - 0, 3м.

Продолжительность испытания 3 часа при температуре масла не ниже + 10?С. При испытании не должно наблюдаться течи масла.

10. Проверка системы охлаждения. Режим пуска и работы охлаждающих устройств должен соответствовать инструкции завода-изготовителя.

11. Проверка состояния силикагеля. Индикаторный силикагель должен иметь равномерную голубоватую окраску зерен. Изменение цвета свидетельствует об увлажнении силикагеля.

12. Фазировка трансформаторов. Должно иметь место совпадение по фазам.

13. Испытание трансформаторного масла. Свежее масло перед заливкой вновь вводимых трансформаторов, прибывших без масла, должно быть испытано по показателям пп. 1, 2, 4 - 12 таблицы 6.

Из трансформаторов, транспортируемых без масла, до начала монтажа следует произвести отбор пробы остатков масла (со дна).

Электрическая прочность остатков масла в трансформаторах напряжением 110-220кВ должна быть не ниже 35кВ и в трансформаторах напряжением 330-500кВ - не ниже 45кВ.

Масло из трансформаторов напряжением 110кВ и выше, транспортируемых с маслом, до начала монтажа испытываются по показателям пп. 1-6 и 12 таблицы 6.

Таблица 6



Испытание масла, залитого из трансформатора с массой масла более 1 тонны, прибывающих с маслом, при отсутствии заводского протокола испытание масла перед включением в работу производится по показателям пп. 1-11 таблицы 6, а масла из трансформаторов напряжением 110кВ и выше, кроме того, по п. 12 таблицы 6.

Испытание масла, залитого в трансформатор, перед включением его в работу (под напряжение) после монтажа производится по показателям пп. 1-6 таблицы 6

При испытании масла из трансформатора напряжением 110кВ и выше по показателям пп. 1-6 таблицы 6 следует производить и измерение тангенса угла диэлектрических потерь изоляции.

Масло из трансформаторов I и II габаритов, прибывающих на монтаж заполненными маслом, при наличии удовлетворяющих нормам показателей заводского испытания, проведенного не более чем за 6 месяцев до включения трансформатора в работу, разрешается испытывать только по показателям пп. 1 и 2 таблицы 6.

14. Испытание включением толчком на номинальное напряжение. В процессе 3-5-кратнот-ного включения трансформатора на номинальное напряжение не должны иметь место явления, указывающие на неудовлетворительное состояние трансформатора.

Трансформаторы, смонтированные по схеме блока с генератором, рекомендуется включать в сеть подъемом напряжения с нуля.

15. Испытания вводов. Следует производить в следующей последовательности:

1 - измерение сопротивления изоляции. Производится мегаомметром на напряжение 1-2,5кВ у вводов с бумажно-маслянной изоляцией. Измеряется сопротивление изоляции измерительной и последней обкладок вводов относительно соединительной втулки. Сопротивление изоляции должно быть не менее 1000Мом.

2 - измерение тангенса угла диэлектрических потерь. Производится у вводов и проходных изоляторов с внутренней основной маслобарьерной, бумажно-масляной и бакелитовой изоляцией. Тангенс угла диэлектрических потерь вводов и проходных изоляторов не должен превышать значений, указанных в таблице 7.

У вводов и проходных изоляторов, имеющих специальный вывод к потенциометрическому устройству (ПИН), производится измерение тангенса угла диэлектрических потерь основной изоляции и изоляции измерительного конденсатора. Одновременно производится и измерение емкости.

Браковочные нормы по тангенсу угла диэлектрических потерь для изоляции измерительного конденсатора те же, что и для основной изоляции.

У вводов, имеющих измерительный вывод от обкладки последних слоев изоляции (для измерения угла диэлектрических потерь), рекомендуется измерять тангенс угла диэлектрических потерь этой изоляции.

Таблица 7



Измерение тангенса угла диэлектрических потерь производится при напряжении 3кВ.

Для оценки состояния последних слоев бумажно-масляной изоляции вводов и проходных изоляторов можно ориентироваться на средние опытные значения тангенса угла диэлектрических потерь:

· для вводов 110 - 115кВ - 3%;

· для вводов 220кВ - 2%;

· для вводов 330-500кВ - предельные значения тангенса угла диэлектрических потерь, принятые для основной изоляции.

3 - испытание повышенным напряжением промышленной частоты.

Испытание является обязательным для вводов и проходных изоляторов напряжением до 35кВ.

Испытательное напряжение для проходных изоляторов, испытываемых отдельно или после установки в распределительном устройстве на масляный выключатель и т. п., принимается согласно таблицы 8.

Таблица 8



Испытание вводов, установленных на силовых трансформаторах, следует производить совместно с испытанием обмоток последних по нормам, принятым для силовых трансформаторов (смотреть таблицу 5).

Продолжительность приложения нормированного испытательного напряжения для вводов и проходных изоляторов с основной керамической, жидкой или бумажно-масляной изоляцией - 1 минута, а с основной изоляцией из бакелита или других твердых органических материалов - 5 минут. Продолжительность приложения нормированного испытательного напряжения для вводов, испытываемых совместно с обмотками трансформаторов - 1 минута.

Ввод считается выдержавшим испытание, если при этом не наблюдалось пробоя, перекрытия, скользящих разрядов и частичных разрядов в масле (у маслонаполненных вводов), выделений газа, а также, если после испытания не обнаружено местного перегрева изоляции.

4 - проверка качества уплотнения вводов. Производится для негерметичных маслонаполненных вводов напряжением 110-500кВ с бумажно-масляной изоляцией путем создания в них избыточного давления масла 98кПа (1 кгс/ см 2).

Продолжительность испытания - 30 минут. При испытании не должно наблюдаться признаков течи масла.

5 - испытание трансформаторного масла. Для вновь заливаемых вводов масло должно испытываться в следующем порядке:

· анализ масла перед его заливкой в оборудование. Каждая партия свежего, поступившего с завода трансформаторного масла должна перед заливкой в оборудование подвергаться однократным испытаниям по показателям, приведенным в таблице 6, кроме п. 3. Значение показателей, полученные при испытаниях, должны быть не хуже приведенных в таблице 6.

Масла, изготовленные по технологическим условиям, не указанным в таблице 6, должны подвергаться испытаниям по тем же показателям, но нормы испытаний следует принимать в соответствии с техническими условиями на эти масла.

· анализ масла перед включением оборудования. Масло, отбираемое из оборудования перед его включением под напряжением после монтажа, подвергается сокращенному анализу в объеме, предусмотренном в пп. 1 - 6 таблицы 6, а для оборудования 110кВ и выше, кроме того, - по п. 12 таблицы 6.

· испытание масла из аппаратов на стабильность при его смешивании. При заливке в аппараты свежих кондиционных масел разных марок смесь проверяется на стабильность в пропорциях смешивания, при этом стабильность смеси должна быть не хуже стабильности одного из смешиваемых масел, обладающего наименьшей стабильностью. Проверка стабильности смеси масел производится только в случае смешивания ингибированного и неингибированного масел.

После монтажа производится испытание залитого масла по показателям пп. 1-6 таблицы 6, а значение тангенса угла диэлектрических потерь - не более приведенных в таблице 9.

Таблица 9



16. Испытание встроенных трансформаторов тока. Следует производить в следующей последовательности:

1 - измерение сопротивления изоляции:

· первичных обмоток. Производится мегаомметром на напряжение 2500В. Значение сопротивления изоляции не нормируется.

Для трансформаторов тока напряжением 330кВ типа ТФКН - 330 измерение сопротивления изоляции производится по отдельным зонам - при этом значения сопротивления изоляции должны быть не менее приведенных в таблице 10.

· вторичных обмоток. Производится мегаомметром на напряжение 500 или 1000В.

Таблица 10



Сопротивление изоляции вторичных обмоток вместе с подсоединенными к ним цепями должно быть не менее 1Мом.

2 - измерение тангенса угла диэлектрических потерь изоляции. Производится для трансформаторов тока напряжением 110кВ и выше.

Тангенс угла диэлектрических потерь изоляции трансформаторов тока при температуре +20?С недолжен превышать значений, приведенных в таблице 11.

Таблица 11



3 - Испытание повышенным напряжением промышленной частоты:

Таблица 12



· изоляции первичных обмоток. Испытание является обязательным для трансформаторов тока до 35кВ.

Продолжительность приложения нормированного напряжения для трансформаторов тока:

С керамической, жидкой или бумажно-масляной изоляцией - 1 минута;

С изоляцией из твердых органических материалов или кабельных масс - 5 минут;

· изоляции вторичных обмоток. Значение испытательного напряжения для изоляции вторичных обмоток вместе с присоединенными к ним цепями составляет 1кВ. Продолжительность приложения нормированного испытательного напряжения - 1 минута.

4 - снятие характеристик намагничивания трансформаторов тока. Следует производить при измерении тока от нуля до номинального, если для этого не требуется напряжение выше 380В.

Для трансформаторов тока, предназначенных для питания устройств релейной защиты, автоматических аварийных осциллографов, фиксирующих приборов и т. п., когда необходимо произведение расчетов погрешностей, токов небаланса и допустимой нагрузки применительно к условиям прохождения токов выше номинального, снятие характеристик производится при изменении тока от нуля до такого значения, при котором начинается насыщение магнитопровода.

При наличии у обмоток ответвлений характеристики следует снимать на рабочем ответвлении.

Снятые характеристики сопоставляют с типовой характеристикой намагничивания или с характеристиками намагничивания других однотипных исправленных трансформаторов тока.

5 - измерение коэффициента трансформации на всех ответвлений. Производится для встроенных трансформаторов тока и трансформаторов, имеющих переключающее устройство (на всех положениях переключателя). Отклонение найденного значения коэффициента от паспортного должно быть в пределах точности измерения.

6 - измерение сопротивления обмоток постоянному току. Производится у первичных обмоток трансформаторов тока напряжением 10кВ и выше, имеющих переключающее устройство. Отклонение измеренного значения сопротивления обмотки от паспортного или от сопротивления обмоток других фаз не должно превышать 2%.

Маслонаполненные трансформаторы мощностью более 1,6МВА, а также ответвленные транс-

форматоры собственных нужд электростанций независимо от мощности испытываются в полном объеме.

Маслонаполненные трансформаторы мощностью до 1,6МВА испытываются по пп. 1, 2, 4, 8, 9, 11-14.

Сухие трансформаторы испытываются по пп. 1-8, 12, 14.

Целью испытаний, проводимых в период ремонтов, является проверка состояния трансформатора и качества ремонта.

Номинальное напряжение

обмотки высшего напряжения,

Значения R 60 , МОм при температуре обмотки, °С

Масляные до 35

Масляные 110

Масляные свыше 110

Не нормируется

Сухие до 1 кВ

Сухие более 1 кВ до 6 кВ

Сухие более 6 кВ

Примечание: Значения, указанные в таблице, относятся ко всем обмоткам данного трансформатора.

Для приведения значений R 60 , измеренных на заводе-изготовителе, к температуре измерения при наладке производится пересчет с помощью коэффициента:

Таблица 4

Коэффициент приведения r60 к температуре измерения при наладке

Разность температуры

Коэффициент пересчета

Коэффициент абсорбции для трансформаторов не нормируется, но для трансформаторов с неувлажненной изоляцией мощностью менее 10 МВА на напряжение до 35 кВ включительно при температуре от 10 до 35 ºС должен быть не ниже 1,3 или учитываются заводские требования завода-изготовителя.

Измерение сопротивления изоляции доступных стяжных шпилек, бандажей, полубандажей ярем, прессующих колец, ярмовых балок и электростатических экранов

Мегаомметр подключают линейным зажимом к объекту испытаний, а зажимом земля к активной стали трансформатора. Показания снимают после установившихся значений, когда стрелка не производит колебаний. Измеренные значения должны быть не менее 2 МОм, а сопротивление изоляции ярмовых балок не менее 0,5 МОм. Измеряется мегаомметром на напряжение 1000-2500 В.

Измерение тангенса угла диэлектрических потерь изоляции обмоток трансформатора

В соответствии с ГОСТ 3483-88 измерение тангенса угла диэлектрических потерь и емкости силовых трансформаторов рекомендуется произ­водить при напряжении от 25 до 60 % испытательного напряжения частоты 50 Гц. Допускается производить измерения при напряже­нии 10 кВ. В условиях эксплуатации измерения на отключенном и выведенном из работы оборудовании, а также при вводе в эксплу­атацию нового трансформатора или трансформатора после ремон­та производят при напряжении 10 кВ.

Схемы измерений

Тангенс угла диэлектрических потерь и емкость обмоток сило­вых трансформаторов измеряется по схемам табл. 1. При этом пос­ледовательность измерений не нормируется.

В условиях эксплуатации, когда баки испытуемых объектов (трансформаторов, реакторов) заземляются, для измерения tgδ и емкости применяется перевернутая мостовая измерительная схема. В отдельных случаях, когда возникает необходимость и имеется возможность изолирования бака трансформатора может приме­няться нормальная схема измерений. При этом достаточно устано­вить бак трансформатора на сухие деревянные бруски. Сопротив­ление изоляции бака должно быть в несколько десятков раз больше максимального сопротивления измерительной ветви моста перемен­ного тока.

Нормальная схема измерения применяется также при определе­нии tgδ зон изоляции между обмотками трансформатора.

Принципиальные мостовые схемы измерения приведены на рис. 6.

При измерении tgδ и емкости одной из обмоток трансформато­ра другие - «свободные» обмотки заземляются. Схемы соединений мостовой измерительной схемы и испытуемого объекта при измере­нии tgδ обмоток трансформаторов приведены на рис. 7, 8.

В тех случаях, когда tgδ какой-либо обмотки имеет завышенное значение, рекомендуется выполнить измерение tgδ отдельных участ­ков изоляции трансформатора. Емкостные схемы замещения глав­ной изоляции трансформаторов приведены на рис. 9.

Схемы измерений tgδ и емкости отдельных участков изоляции трансформаторов приведены в табл. 5 и на рис. 10, 11.

Рис. 6. Принципиальные мостовые измерительные схемы:

а - нормальная; б - перевернутая;

1 - источник напряжения; 2 - испытуемый объект; 3 - измерительный мост; С Х - емкость испытуемого объекта; С 0 - емкость образцового конденсатора; УР - указатель равновесия моста; R 3 , R 4 , С 4 - элементы моста


(ВН+СН+НН) – К


ВН – (СН+НН+К)


СН – (ВН+НН+К)


НН – (СН+ВН+К)


(ВН+СН) – (НН+К)


(ВН+НН) – (СН+К)


(СН+НН) – (ВН+К)





В этой статье речь пойдет о коэффициенте абсорбции, который свидетельствует о текущем состоянии гигроскопической изоляции электротехнического оборудования. Из статьи вы узнаете, что такое коэффициент абсорбции, для чего его измеряют, и какой физический принцип лежит в основе процесса измерения. Также скажем несколько слов о приборах, при помощи которых эти измерения производят.

«Правила устройства электроустановок» в пунктах с 1.8.13 по 1.8.16 и «Правила технической эксплуатации электроустановок потребителей» в приложении 3, сообщают нам, что обмотки двигателей, равно как и обмотки трансформаторов, после капитального или текущего ремонта, подвергаются обязательной проверке на значение коэффициента абсорбции. Эта проверка осуществляется в сроки планово-предупредительных работ по инициативе руководителя предприятия. Коэффициент абсорбции связан с увлажненностью изоляции, и соответственно свидетельствует о ее качестве в текущий момент.

В нормальном состоянии изоляции коэффициент абсорбции должен быть больше или равен 1,3. В случае, если изоляция сухая, коэффициент абсорбции окажется выше 1,4. Влажная изоляция имеет коэффициент абсорбции близкий к 1, это является сигналом к тому, что изоляцию следует высушить. Необходимо также помнить, что температура окружающей среды оказывает влияние на коэффициент абсорбции, и в момент испытаний ее температура должна быть в пределах от +10°С до +35°С. С ростом температуры коэффициент абсорбции уменьшится, а с понижением - увеличится.

Коэффициентом абсорбции называется коэффициент диэлектрического поглощения, определяющий увлажнённость изоляции, и позволяющий решить вопрос о том, нуждается ли гигроскопическая изоляция того или иного оборудования в сушке. Испытание заключается в измерении посредством мегомметра сопротивления изоляции через 15 секунд и через 60 секунд с момента начала проверки.

Сопротивление изоляции через 60 секунд - R60, сопротивление через 15 секунд - R15. Первое значение делится на второе, и получается значение коэффициента абсорбции.

Суть измерения в том, что электрическая изоляция характеризуется электроемкостью, и напряжение мегомметра, приложенное к изоляции, заряжает постепенно эту емкость, насыщая изоляцию, то есть возникает ток абсорбции между щупами мегомметра. Для проникновения тока в изоляцию требуется время, и это время тем больше, чем больше размер изоляции и чем выше ее качество. Чем выше качество, тем сильнее препятствует изоляция прохождению тока абсорбции при проведении измерений. Так, чем более увлажнена изоляция, тем коэффициент абсорбции меньше.



У сухой изоляции коэффициент абсорбции будет сильно больше единицы, поскольку ток абсорбции сначала резко устанавливается, затем постепенно снижается, и сопротивление изоляции через 60 секунд, которое покажет мегомметр, окажется больше примерно на 30%, чем оно было через 15 секунд с момента начала замера. Влажная же изоляция покажет коэффициент абсорбции близкий к 1, поскольку ток абсорбции, установившись, не сильно изменит свое значение спустя еще 45 секунд.

Новое оборудование не должно отличаться коэффициентом абсорбции от заводских данных более чем на 20% в сторону уменьшения, и его значение в диапазоне температур от +10°С до +35°С не должно быть меньше 1,3. Если условие не выполняется, оборудование необходимо сушить.

При необходимости измерить коэффициент абсорбции у силового трансформатора или мощного двигателя, применяют мегомметр на напряжение 250, 500, 1000 или 2500 В. Вспомогательные цепи измеряют мегомметром на напряжение 250 вольт. Оборудование с рабочим напряжением до 500 вольт - мегомметром на 500 вольт. Для оборудования с номинальным напряжением от 500 вольт до 1000 вольт применяют мегомметр на 1000 вольт. Если номинальное рабочее напряжение оборудования выше 1000 вольт, применяют мегомметр на 2500 вольт.

С момента подачи высокого напряжения от щупов измерительного прибора производят отсчет времени 15 и 60 секунд, и фиксируют значения сопротивления R15 и R60. Во время подключения измерительного прибора, оборудование, которое подвергается проверке, должно быть обязательно заземлено, а напряжение с его обмоток должно быть снято.

По окончании измерений следует подготовленным проводником разделить заряд с обмотки на корпус. Время разряда для обмоток с рабочим напряжением 3000 В и выше должно быть не менее 15 секунд для машин до 1000 кВт и не менее 60 секунд для машин мощностью больше 1000 кВт.

Для измерения коэффициента абсорбции обмоток машин между собой и между обмотками и корпусом, проводят поочередно измерения сопротивлений R15 и R60 для каждой из независимых цепей, а остальные цепи при этом соединяют между собой и с корпусом машины. Предварительно измеряют температуру цепи, подвергаемой проверке, она должна желательно соответствовать температуре при номинальном режиме работы машины, и не должна быть ниже 10°С, в противном случае обмотку следует прогреть прежде чем проводить замеры.

Значение наименьшего сопротивления изоляции R60 при рабочей температуре оборудования вычисляют по формуле: R60 = Uн / (1000 + Pн / 100), где Uн – номинальное напряжение обмотки в вольтах; Pн – номинальная мощность в киловаттах для машин постоянного тока или в киловольт-амперах для машин переменного тока. Ка = R60 / R15. Вообще, существуют таблицы, в которых указаны допустимые значения коэффициентов абсорбции для различного оборудования.

Надеемся, что наша краткая статья была для вас полезной, и теперь вы знаете, как и с какой целью необходимо измерять коэффициент абсорбции трансформаторов, электродвигателей, генераторов, и другого электротехнического оборудования, имеющего обмотки.

Пусконаладочные испытания предназначены для проверки основных технических данных трансформатора и отдельных его узлов перед включением трансформатора в эксплуатацию, а также выявления скрытых неисправностей. Часть вышеуказанных измерений и испытаний проводят в процессе монтажа трансформатора, часть - после окончательной сборки и заливки маслом.

Измерение параметров изоляции входит в оценку состояния изоляции трансформатора. В объем пусконаладочных испытаний входят:
1) измерение потерь холостого хода при малом однофазном возбуждении;
2) измерение омического сопротивления обмоток;
3) измерение коэффициента трансформации;
4) проверка группы соединения обмоток;
5) испытание изоляции приложенным напряжением.

При производстве пусконаладочных работ необходимо соблюдать определенную последовательность в выполнении перечисленных испытаний.

Измерение потерь холостого хода следует проводить до подачи постоянного напряжения на обмотки трансформатора, так как постоянное напряжение может вызвать дополнительное намагничивание магнитной системы и, как следствие, получение неудовлетворительных результатов измерений, поэтому потери холостого хода при малом возбуждении измеряют до нагрева трансформатора постоянным током и до измерения активных сопротивлений обмоток.

Активное сопротивление обмоток следует измерять при установившейся температуре трансформаторов до нагрева или после остывания, для того чтобы избежать ошибочных результатов, связанных с неравномерной температурой отдельных обмоток

Испытание изоляции приложенным напряжением следует проводить после оценки ее состояния. Нарушение этой последовательности может вызвать повреждение вполне доброкачественного трансформатора. Например, при испытании электрической прочности изоляции пробой в трансформаторе может быть вызван низким качеством залитого масла, наличием влаги в изоляции, загрязнением и другими недостатками, контролируемыми при оценке изоляции.

Очередность проведения измерения коэффициента трансформации и определения группы соединений обмоток не установлена.

Ввиду сложности пусконаладочных испытаний, необходимости соответствующего опыта в проведении работ и специального оборудования и приборов такие испытания проводят специализированные наладочные организации или лаборатории. Результаты измерений и испытаний оформляют соответствующими протоколами, прилагаемыми к технической документации по монтажу трансформатора.

Особое внимание при испытаниях следует уделить безопасности проведения работ.

Измерение потерь холостого хода при малом однофазном возбуждении

Эти испытания производятся для трансформаторов мощностью 10000 кВА и более. Потери холостого хода при малом однофазном возбуждении измеряют по схемам, приведенным на рисунке 1,а. Для трехфазных трансформаторов выполняют три однофазных опыта путем поочередного замыкания накоротко одной из фаз и возбуждения двух других фаз трансформатора.

а - схемы последовательного закорачивания фаз: слева направо закорочены соответственно фазы с, b , а; б - схема подключения приборов; в - схема подключения питания при размагничивании
Рисунок 1 - Измерение потерь холостого хода при малом возбуждении с последовательным закорачиванием фаз

В первом опыте накоротко замыкают обмотку фазы А и возбуждают фазы В и С. При этом измеряемые потери будут характеризовать потерю энергии на возбуждение фаз В и С магнитопровода. Аналогичные опыты производят при поочередно закорачиваемых других фазах.

Замыкание накоротко обмотки любой фазы можно производить на соответствующих выводах любой из обмоток трансформатора, учитывая при этом действительную схему соединения обмоток трансформатора. При измерении обычно подводят напряжение и закорачивают накоротко одну из фаз на стороне низшего напряжения трансформатора, добиваясь таким образом большего возбуждения магнитной системы.

При испытании измеряют подводимое напряжение и суммарную мощность, потребляемую испытуемым трансформатором и измерительными приборами. Затем определяют потребление измерительных приборов (Рпр) путем измерения или расчета. Измерение потребления приборов производят по схеме на рисунке,б. Потребление приборов можно определить также по формуле:

Рпр = U2/Rv+ U2/Rw,

где U - подводимое переменное напряжение, В;
Rv - сопротивление вольтметра, Ом;
Rw - сопротивление обмотки напряжения ваттметра, Ом.

Потери в испытуемом трансформаторе вычисляют по формуле:

Ро"=Ризм-Рпр.

В трехфазных трансформаторах потери, измеряемые по схемам с закорачиванием фаз А и С, должны быть практически равными, а измеренные по схеме с закорачиванием фазы В - больше последних. Это объясняется различной длиной пути замыкания магнитного потока при возбуждении трансформатора по указанным схемам измерения. При возникновении какого-либо короткозамкнутого витка для одного из стержней магнитопровода соотношение потерь, измеренных по этим схемам, изменится, причем появление короткозамкнутого витка вызывает увеличение потерь, поэтому «дефектной» будет та фаза, при закорачивании которой будут измерены наименьшие потери. Это явление используется для оценки состояния трансформаторов.

Полученные результаты оценивают путем сравнения их со значениями, измеренными при изготовлении и приведенными в паспорте трансформатора. Для сравнения результатов измерение потерь производят по схемам и при напряжении, указанном в паспорте трансформатора.

Для трансформаторов на напряжение до 35 кВ включительно измеренные потери для каждой из схем не должны отличаться более чем на 10% значений, полученных при изготовлении. Отношение потерь, измеренных при закорачивании фаз А и С (РА/РС), а также отношение этих потерь к потерям, полученным при закорачивании фазы В (РВ/РА и РВ/РС), не должны отличаться в пределах погрешности измерений от таких же отношений, полученных при измерении на заводе.

Для однофазных трансформаторов на напряжение 110 кВ и более полученные потери не должны отличаться более чем на 10% от потерь, измеренных при изготовлении трансформаторов.

Для трехфазных трансформаторов на напряжение 110 кВ и выше соотношение потерь, измеренных по указанным выше схемам (РА/РС, РВ/РА и РВ/РС), не должно отличаться больше чем на 5% таких же соотношений потерь, полученных при изготовлении.

Если трансформаторы имеют реакторные переключающие устройства, то измерение потерь холостого хода дополнительно производят на промежуточном положении регулятора «Мост». Результаты оценивают аналогично путем сравнения их с заводскими значениями на данном положении устройства. На результаты измерений значительное влияние оказывает намагничивание магнитопровода вследствие протекания по обмоткам трансформатора постоянного тока. В этих случаях для измерения потерь трансформаторы размагничивают.

Размагничивание производят путем подачи на обмотки постоянного тока с изменяющейся полярностью. Схема размагничивания трансформатора показана на рисунке 1,в. При помощи реостата плавно увеличивают ток в обмотке трансформатора до значения, равного 1,1 тока холостого хода. Затем также плавно снижают ток до 0 и, переключая полярность, увеличивают ток до значения 1,1 тока холостого хода. Такие циклы изменения тока производят при значениях тока 0,8; 0,6; 0,4 и 0,2 Iхх. Затем, снизив ток до 0, отключают источник питания постоянного тока и повторяют измерение потерь холостого хода.

Возможно произвести размагничивание трансформаторов методом кратковременной подачи на обмотки номинального напряжения в режиме холостого хода трансформаторов. Методика проведения измерений потерь холостого хода на однофазном пониженном напряжении должна соответствовать ГОСТ 3484-77.

Измерение активного сопротивления обмоток

Измерение сопротивления обмоток постоянному току производят для проверки состояния электрических контактных соединений и целостности электрической цепи обмоток трансформатора. Наиболее характерными дефектами, которые обнаруживаются при этом измерении, являются:
1) обрыв одного или нескольких из параллельных проводов в отводах;
2) нарушение пайки;
3) недоброкачественный контакт присоединения отводов обмотки к вводам;
4) недоброкачественный контакт в переключателях ПБВ или устройствах РПН;
5) неправильная установка привода ПБВ.

Обычно в условиях монтажа сопротивление измеряют при помощи амперметра и вольтметра методом падения напряжения. На рисунке 2,а, б показаны две принципиальные схемы подключения приборов при измерении. Схему на рисунке 2,а применяют при измерении малых значений сопротивлений от долей Ома до нескольких Ом, а схему на рисунке 2,б - при измерении больших значений сопротивления. Правильный выбор схемы измерения исключает значительные погрешности из-за падения напряжения в приборах, которые обычно при вычислении значения сопротивления не учитываются.

Рисунок 2 - Схемы измерения сопротивления обмотки постоянному току

В практике в основном применяют схему на рисунке 2,а. При сборке этой схемы цепи тока и напряжения разделяют, т. е. выполняют отдельными проводами, чтобы исключить из измеряемого сопротивления сопротивление проводов цепи тока и переходным сопротивления в местах подключения цепей и напряжения к вводам трансформатора. Цепь измерения напряжения должна подключаться непосредственно к токоведущим шпилькам вводов испытываемой обмотки. Обычно сопротивление измеряют при напряжениях до 24 В и токах до 10 А. При этом ток не должен превышать 20% номинального тока обмотки.

Пределы измерения приборов должны быть выбраны такими, чтобы при измерениях отклонение по стрелке было во второй половине шкалы. Класс точности приборов должен быть не более 0,5. В качестве источника питания, как правило, применяют кислотные или щелочные аккумуляторные батареи.

Сопротивление реостата выбирают в 8-10 раз больше, чем сопротивление измеряемой обмотки. Измерение производят следующим образом. Включают рубильник и при помощи реостата устанавливают необходимый ток в цепи. В результате индуктивности обмотки ток будет постепенно возрастать до установившегося значения. После установления тока записывают показания вольтметра и амперметра. Вольтметр включают после установления тока в цепи, а выключают перед отключением рубильника. Невыполнение этого порядка включения и отключения вольтметра может привести к его повреждению.

При измерении сопротивления обмотки, обладающей большой индуктивностью, для уменьшения времени установления тока в цепи производят кратковременное форсирование (увеличение) тока путем шунтирования реостата кнопкой. Время установления тока при измерении сопротивления обмоток больших трансформаторов достигает 30 минут и более. Сопротивление измеряют для каждой обмотки трансформатора на всех положениях переключающего устройства. Оценку результатов производят путем сравнения полученных значений с данными, указанными в паспорте трансформатора.

Для однофазных трансформаторов полученные значения не должны отличаться больше чем на 2% значений, указанных в паспорте при одинаковой температуре и на тех же регулировочных ответвлениях.

Для трехфазных трансформаторов сопротивления, полученные на одинаковых ответвлениях разных фаз, не должны отличаться друг от друга более чем на 2%. если в паспорте нет специальных указаний.

Полученные значения сопротивления обмотки постоянному току приводят к температуре, указанной в паспорте трансформатора по формуле:

Rx = R 0 (235+tx)/(235+t 0),

где Rx - значение сопротивления при температуре, указанной в паспорте tx, Ом;
R 0 - значение сопротивления при температуре измерения t 0 , Ом;
t 0 - температура измерения, °С;
tx - температура, указанная в паспорте, °С.

За температуру масляного трансформатора, ранее не включавшегося и не подвергавшегося нагреву, принимают температуру верхних слоев масла при условии, что измерение сопротивления производят не ранее чем через 30 минут после заливки масла для трансформаторов мощностью до 1000 кВА включительно и не ранее чем через 60 минут для трансформаторов большой мощности.

Методика проведения измерения сопротивления обмоток должна соответствовать ГОСТ 3484 77.

Измерение коэффициента трансформации

Коэффициентом трансформации называют отношение напряжения обмотки ВН к напряжению обмотки ИН при холостом ходе трансформатора. Коэффициент трансформации определяют для всех ответвлений обмоток и для всех фаз. Для трехобмоточных трансформаторов достаточно проверить коэффициент трансформации для двух пар обмоток. Путем измерения коэффициента трансформации могут выявляться следующие отклонения:
1) неправильное подсоединение отводов РПН;
2) неправильная установка привода ПБВ.

Коэффициент трансформации определяют методом двух вольтметров. Измерение производят двумя вольтметрами класса не ниже 0,5 следующим образом. К одной из обмоток трансформатора подводят напряжение и измеряют его одним из вольтметров. Одновременно другим вольтметром измеряют напряжение на другой обмотке. Чтобы избежать применения измерительных трансформаторов напряжения, переменное напряжение 220-380 В подводят к обмотке ВН.

При испытании трехфазных трансформаторов коэффициент трансформации определяют по линейным напряжениям на соответствующих одноименных линейных выводах обеих проверяемых обмоток или по фазным напряжениям соответствующих фаз. Коэффициент трансформации по фазным напряжениям измеряется при однофазном и трехфазном возбуждении.

Если схема соединения измеряемых обмоток ∆/Y или Y/∆, коэффициент трансформации измеряют при однофазном возбуждении с поочередным закорачиванием фаз (рисунок 3). Одну из фаз, соединенных в треугольник, накоротко замыкают путем соединения двух соответствующих выводов данной обмотки, а напряжение подают на две оставшиеся фазы. Полученное значение коэффициента должно быть равно 2 Кф при питании со стороны звезды или Кф/2 при питании со стороны треугольника, где Кф - фазный коэффициент трансформации.

Рисунок 3 - Схема измерения фазного коэффициента трансформации при соединении обмоток ∆/Y и Y/∆

Если схема соединения измеряемых обмоток ∆/∆ иле Y/Y фазный коэффициент можно измерять при трехфазном возбуждении, если предварительно установлено, что несимметрия напряжения практически не снижает точности измерения, или при однофазном возбуждении с закорачиванием фаз. Фазный коэффициент трансформации в основном определяют для выявления причин неудовлетворительных значений линейного коэффициента.

Коэффициент трансформации измеряют также методом моста или образцового трансформатора. Однако эти методы не находят широкого применения при монтаже.

Полученные значения коэффициента трансформации на всех ответвлениях не должны отличаться более чем на 2% значения, рассчитанного по номинальным напряжениям.

Методика определения коэффициента трансформации должна соответствовать ГОСТ 3484-77.

Проверка группы соединения обмоток

Группа соединения характеризует угол сдвига векторов ЭДС в обмотках ВН, СН и НН одноименных фаз трансформатора. Тождественность групп соединения обмоток различных трансформаторов является основным условием их параллельной работы, несоблюдение этих условий вызывает возникновение при параллельной работе значительных уравнительных токов, которые в некоторых случаях могут во много раз превосходить номинальные. Это обстоятельство в основном определяет необходимость проверки группы соединения обмоток трансформаторов после их монтажа. В практике случаи несоответствия группы, указанной в паспорте трансформаторов, случаются чрезвычайно редко.

Наиболее характерными недостатками, выявленными при проверке группы соединения обмоток, являются:
1) неправильно выполненная маркировка вводов трансформатора;
2) неправильное подсоединение отводов обмоток к вводам.

При испытании трехобмоточных трансформаторов проверяют группу соединения между двумя парами разных обмоток. Проверку группы соединения обмоток трансформаторов на монтаже производят главным образом по методу двух вольтметров для трехфазных и методу постоянного тока для однофазных трансформаторов.

Метод двух вольтметров основан на совмещении векторных диаграмм первичного и вторичного напряжения и измерений напряжений между соответствующими вводами с последующим сравнением полученных значений с расчетными.

Для совмещения векторных диаграмм выводы А и а испытуемого трансформатора соединяют между собой. Затем к одной из обмоток подводят напряжение обычно не более 380 В и измеряют последовательно напряжение между выводами в-В, в-С и с-В - при испытании трехфазных трансформаторов и выводами х-Х - при испытании однофазных трансформаторов (рисунок 4,а).

а - методом вольтметра; б - методом подачи постоянного тока
Рисунок 4 - Схемы измерения группы соединения обмоток

Полученные значения сравниваются с расчетными, которые предварительно вычисляют по формулам, приведенным в таблице 1.

Таблица 1 - Расчетные значения измеряемого напряжения при проверке групп соединения обмоток методом двух вольтметров


Группа соединения

Угол смещения векторов напряжения, град

Векторная диаграмма на рис. 5

Uл√1-Кл+К2л

Uл√1-√3Кл+К2л

Uл√1-Кл+К2л

Uл√1+Кл+К2л

Uл√1-√3Кл+К2л

Uл√1+√3Кл+К2л

Uл√1+Кл+К2л

Uл√1-Кл+К2л

Uл√1+√3Кл+К2л

Uл√1+√3Кл+К2л

Uл√1+Кл+К2л

Uл√1+√3Кл+К2л

Uл√1+Кл+К2л

Uл√1-Кл+К2л

Uл√1+√3Кл+К2л

Uл√1-К√3Кл+К2л

Uл√1-Кл+К2л

Uл√1+Кл+К2л

Uл√1-√3Кл+К2л

Uл√1-√3Кл+К2л

Примечание: Uл – линейное напряжение на выводах обмоток НН при испытании; Кл – линейный коэффициент трансформации.

Рисунок 5 - Совмещенные векторные диаграммы линейных напряжений

Метод постоянного тока применяют главным образом для проверки группы соединения обмоток однофазных трансформаторов. Он заключается в поочередной проверке полярности выводов А-х и а-х магнитоэлектрическим вольтметром, имеющим соответствующий предел измерения при подведении к выводам А-х напряжения постоянного тока около 2-12 В (рисунок 4,б).

Полярность выводов А-х устанавливают при включении тока. После проверки полярности выводов А-х вольтметр отсоединяют и, не отключая питания, присоединяют его к выводам а-х. Полярность выводов а-х устанавливают в момент включения и отключения тока. Если полярность выводов а-х при включении тока окажется одинаковой с полярностью выводов А-х, а при отключении - разной, то группа соединения обмоток 0, в противном случае будет группа соединений 6.

Числовое обозначение группы принято определять по положению векторов напряжения обмоток на часовом циферблате. Если представить, что вектор высшего напряжения проходит через центр циферблата и цифру 12, то час, на который будет направлен вектор низшего напряжения, будет соответствовать числовому обозначению группы. Векторные диаграммы для различных групп соединения приведены на рисунке 5,а-м.

Угол сдвига между векторами напряжения обмоток зависит от схемы их соединения и взаимного направления обеих обмоток.

Отечественные силовые трансформаторы, как правило, имеют группы соединения 0 и 11. Маркировка фаз выводов, от обмоток выполняется в очередности А, В, С - слева направо со стороны высшего напряжения. Группа и схема соединения обмоток указываются в технической эксплуатационной документации на трансформатор и щитке, закрепленном на баке.

Методика определения группы соединения обмоток трансформатора должна соответствовать ГОСТ 3484-77.

Проверка электрической прочности изоляции приложенным напряжением

В результате приложения повышенного напряжения создается в испытуемой изоляции увеличенная напряженность электрического поля, что позволяет выявить дефекты в ней, не обнаруженные другими методами. Наиболее характерными дефектами, выявленными при этом испытании, являются:
1) недостаточные расстояния между гибкими неизолированными отводами обмоток НН в месте их подсоединения к шпильке ввода;
2) наличие в трансформаторе воздушных пузырей;
3) некоторые виды местного увлажнения и загрязнения изоляционных деталей.

Испытание изоляции приложенным напряжением производят главным образом при пусконаладочных испытаниях трансформаторов напряжением до 35 кВ включительно. В отдельных случаях этот метод применяют для проверки электрической прочности изоляции обмоток НН (до 35 кВ) трансформаторов на напряжение 110 кВ и выше.

Для проведения испытаний необходимо подготовить испытательный трансформатор. Мощность испытательного трансформатора, кВА, зависит от зарядной мощности испытываемой обмотки и определяется ее емкостью и значением испытательного напряжения:

Р = 314CU 2 ·10 -9 ,

где С - емкость обмотки, пФ;
U - испытательное напряжение, кВ.

Испытание осуществляют при частоте 50 Гц в течение 1 мин.

Испытательное напряжение зависит от класса изоляции трансформатора. Для масляных трансформаторов его значения приведены ниже:

Испытательные напряжения для сухих трансформаторов, а также масляных специального исполнения устанавливаются заводской технической документацией. При испытании на монтаже испытательное напряжение составляет 90% нормируемых для данного класса изоляции значений, указанных выше.

При испытании вводы испытуемой обмотки соединены между собой и подключены к испытательному трансформатору, вводы остальных обмоток соединены между собой и заземлены.

На рисунке 6 показана принципиальная схема испытания. Напряжение увеличивают плавно при помощи регулировочного трансформатора. Контроль за подводимым напряжением осуществляют по показаниям вольтметра, установленного в первичной цепи испытательного трансформатора, с учетом его коэффициента трансформации.

ИТ - испытательный трансформатор; Р - разрядник; R - резистор
Рисунок 6 - Схема испытания изоляции трансформатора приложенным напряжением

При испытании трансформаторов, имеющих значительную емкость, которая может исказить и завысить коэффициент трансформации испытательного трансформатора, напряжение контролируют на стороне ВН при помощи шаровых разрядников либо высоковольтного киловольтметра. Для этого шары разрядника устанавливают на расстоянии, соответствующем испытательному напряжению. Затем, подсоединяя испытательный трансформатор к испытуемой изоляции, поднимают напряжение до пробоя разрядников и отмечают показания вольтметра, установленного на стороне НН. После этого разрядники удаляют и увеличивают напряжение, руководствуясь полученными показаниями вольтметра.

Контроль за состоянием изоляции при испытании производят по показаниям амперметра и путем наблюдения и прослушивания. Повреждения в испытуемом трансформаторе проявляются в виде потрескивания и разрядов внутри, выделением дыма из расширителя и изменения тока в испытательном трансформаторе. При испытаниях могут выявляться потрескивания, не связанные с повреждением изоляции, например в результате наличия внутри трансформатора воздушных пузырей, отсутствия заземления некоторых металлических конструктивных деталей и др. В таких случаях обнаруженные недостатки устраняют, а испытания изоляции повторяют.

При пробое твердой изоляции внутри трансформатора обычно слышен глухой звук удара, а при пробое масляного промежутка - звонкий.

Трансформатор считается выдержавшим испытание, если в процессе испытания не наблюдалось пробоя или частичных разрядов, определяемых по звуку, выделению газа и дыма или по показаниям приборов. При обнаружении дефектов трансформатор подлежит разборке для обнаружения дефектов и выполнения соответствующего ремонта.

Методика проведения испытаний электрической прочности изоляции трансформатора напряжением должна соответствовать ГОСТ 1516.1-76, ГОСТ 1516.2-76.

Допустимость включения трансформаторов без сушки определяется результатами комплекса испытаний и измерений с учетом условий, в которых находился трансформатор до начала монтажа и в процессе его выполнения.
Условия включения трансформаторов без сушки и необходимость сушки активной части регламентированы «Инструкцией по контролю изоляции трансформаторов перед вводом в эксплуатацию», а также «Инструкцией транспортирования, хранения, монтажа и ввода в эксплуатацию силовых трансформаторов на напряжение до 35 кВ включительно без ревизии их активных частей».

Краткая характеристика методов контроля влажности.

Для включения трансформатора без сушки требуется оценить степень увлажнения изоляции, которая определяется следующими характеристиками главной изоляции трансформаторов, залитых маслом:
измерением 15-секундного и одноминутного сопротивления изоляции (R15 и R60) и нахождением коэффициента абсорбции;
измерением тангенса угла диэлектрических потерь обмоток;
измерением емкости и нахождением соотношения С2/С50 (метод «емкость - частота»);
нахождением отношений Д С/С и приращений этих значений в конце и начале осмотра, если при монтаже производился осмотр активной части трансформатора вне масла (метод «емкость - время»);
измерением емкости в нагретом и холодном состояниях и определением отношения Сгор/Схол, если по условиям монтажа необходим подогрев трансформатора в масле (метод «емкость - температура»).
Коэффициент абсорбции . Состояние изоляции обмоток определяют по коэффициенту абсорбции, т. е. по соотношению сопротивлений изоляции обмоток в зависимости от времени приложения напряжения. Измеряют мегаомметром сопротивление изоляции обмоток через 15 и 60 с после приложения напряжения и определяют коэффициент абсорбции, равный отношению R15 / R60. Если при 10-30 °С отношение R15 / R60 равно 1,3, коэффициент абсорбции соответствует норме.
Тангенс угла диэлектрических потерь . Величина tg δ также характеризует общее состояние изоляции, являясь показателем ее увлажнения и потерь в ней.
При приложении к изоляции напряжения из сети потребляется не только реактивная, но и активная мощность. Отношение активной мощности, потребляемой изоляцией, к реактивной называется тангенсом угла диэлектрических потерь, выражается в процентах. Величина tg δ обмоток трансформатора до 35 кВт мощностью менее 2500 кВ А не должна превышать 1,5 % при 10 °С, 2 % - при 20 °С, 2,6 % - при 30 °С и 8 % - при 70 °С.
Метод «емкость - частота». О степени увлажненности обмоток судят по зависимости емкости от частоты проходящего по обмоткам тока при неизменной температуре (метод «емкость- частота»). Емкость обмоток при частотах 2Гц (С2) и 50 Гц (С50) измеряют специальным прибором контроля влажности ПКВ при 10- 20 °С. Отношение С2/С50 характеризует степень увлажненности изоляции обмоток. Это отношение должно быть не более: 1,1-при температуре обмоток 10 °С; 1,2 - при 20 °С и 1,3 - при 30 °С.
Метод «емкость - время». Определяют относительный прирост емкости по времени ДС по отношению к емкости С испытуемой обмотки при одной и той же температуре. Метод «емкость - время» Д С/С позволяет обнаружить даже незначительное увлажнение изоляции трансформатора.
Метод «емкость - температура». Другой емкостный метод контроля влажности изоляции обмоток основан на зависимости емкости обмоток от температуры. Физическая основа его заключается в изменении диэлектрической постоянной изоляции, а следовательно, и ее емкости при изменении температуры. Влияние температуры на величину диэлектрической постоянной у увлажненной изоляции проявляется сильнее, чем у сухой. Наибольшее допустимое значение отношения Сгор/Схол обмоток в масле составляет 1,1.
Параметры изоляции измеряют при ее температуре не ниже 10 °С. Измерение допускается выполнять не ранее чем через 12 ч после окончания заливки бака трансформатора маслом.
Объем и порядок проверки трансформаторов для определения возможности включения их без сушки и условия включения без сушки приведены в инструкции и здесь не рассматриваются.
Трансформаторы всех мощностей подвергают кон- тролыюму прогреву в масле при наличии признаков увлажнения масла, с которым прибыл трансформатор, или если время хранения на монтаже без доливки масла превышает время, указанное инструкцией, но не более 7 мес, или время пребывания активной части трансформатора на воздухе превышает время, определенное инструкцией, но не более чем вдвое, или характеристики изоляции не соответствуют нормам.
Если в результате контрольного прогрева трансформатора характеристики изоляции не приведены в соответствие с нормами или время его хранения без доливки масла превышает 7 мес, но не более года, выполняют контрольную подсушку изоляции.
Сушку трансформаторов всех мощностей производят обязательно: при наличии следов воды на активной части или в баке; продолжительности пребывания активной части на воздухе, превышающей более чем вдвое нормированное время; хранении трансформатора без доливки масла более одного года; несоответствии характеристики изоляции нормам после контрольной подсушки.
Контрольный прогрев, который производят в собственном баке трансформатора с маслом без вакуума, продолжается до тех пор, пока температура верхних слоев масла превысит высшую из температур, указанных в паспорте, на 5-15 °С в зависимости от метода прогрева. При контрольной подсушке обмоток трансформатора прогрев осуществляется теми же методами, что и контрольный прогрев до температуры верхних слоев масла, равной 80 °С, при вакууме, предусмотренном конструкцией трансформатора. Режим контрольной подсушки рекомендован следующий: через каждые 12 ч подсушки в течение 4 ч производить циркуляцию масла насосом через трансформатор; длительность подсушки не должна превышать 48 ч (не считая времени нагрева). Когда характеристики изоляции достигнут нормы, подсушку прекращают, но не раньше, чем через 24 ч после достижения температуры 80 °С. Схема подсушки трансформатора показана на рис. 1.

Рис. 1.
1 - бак трансформатора, 2 - вакуумметр, 3 - кран, 4 и 5 - масляный и вакуумный насосы. Стрелками обозначено движение масла
Наиболее распространенным способом сушки активной части трансформатора является способ индукционных потерь в кожухе, основанный на его нагреве вихревыми токами, возникающими при воздействии на кожух переменного магнитного потока. Магнитный поток изменяют с помощью специальной намагничивающей обмотки, наматываемой на кожух и питаемой переменным током. Вихревые токи нагревают кожух, в результате чего через воздушную прослойку нагревается и активная часть. Перед сушкой масло из бака трансформатора полностью удаляют.
Для равномерного нагрева обмотку располагают по нижней и верхней частям бака, оставляя около 1/3 высоты свободной. В нижней части бака укладывают около 60- 65 % общего числа витков. Нагрев регулируют переключением витков обмотки.
Сечение провода и число витков намагничивающей обмотки, а также необходимую мощность для нагрева трансформатора определяют по специальным справочникам.
Чтобы устранить отставание нагрева нижней части бака от верхней, дополнительно подогревают дно бака трансформатора воздуходувкой или закрытыми электропечами. Теплоизоляция бака создает благоприятные условия для ускорения сушки и экономии электроэнергии. Ее обычно выполняют двухслойной из асбестовых листов толщиной 4-5 мм. Листы крепят шпагатом или киперной лентой, но не проволокой. Крышку утепляют во избежание конденсации на ней влаги. Для контроля температур устанавливают термопары в средней фазе обмоток и термометры на железе бака.
Проверяют надежность уплотнений плавным увеличением вакуума. Затем производят пробный нагрев трансформатора. Примерно в течение часа на разных ступенях регулировки сопоставляют результаты измерения токов с расчетными данными. Наблюдают за скоростью нагрева бака. Если результаты пробного нагрева удовлетворительны, трансформатор считают готовым к сушке.

Рис. 2. :
1 - вакуумная установка, 2 - кран для регулирования вакуума, 3 - вакуумметр, 4 - временные вводы для измерения, 5 - трансформатор, 6 - намагничивающая обмотка, 7 - труба для продувки горячим воздухом, 8 - питающие кабели, 9 - электрические печи, 10 - отстойник для слива масла, 11 - заземление бака, 12 - сепаратор (центрифуга)
Сушку трансформатора способом потерь в кожухе начинают с разогрева трансформатора. При этом обеспечивают плавный рост температуры кожуха регулировкой числа витков. Продолжительность разогрева кожуха колеблется от 12 до 15 ч для трансформаторов средней мощности. Необходимо тщательно контролировать температурный режим сушки, не допуская увеличения температуры обмоток более 100-105 и кожуха 110-120 °С. Сушку производят под вакуумом. Первым показателем окончания сушки является установившееся в течение 6 ч сопротивление обмоток при постоянных вакууме и температуре обмоток. Второй показатель - исчезновение или незначительное выделение конденсата. После окончания сушки и снижения температуры обмоток трансформатора до 75-80 °С его бак заполняют высушенным под вакуумом маслом через нижний кран. Трансформаторы на напряжение до 35 кВ включительно разрешается заливать маслом (без вакуума) при его температуре не ниже 10 °С. В процессе сушки и заливки трансформатора маслом температуру нагрева бака и активной части регулируют периодическим включением и отключением питания намагничивающей обмотки. Схема сушки трансформатора способом индукционных потерь приведена на рис. 2.



Статьи по теме