Проведение измерений и испытаний электрооборудования. Контрольные испытания электроустановки

Страница 14 из 14

§ 9. Сроки и нормы испытаний электрооборудования

Каждую, фазу электрических проводов, шинопроводов, кабелей, обмоток и контактов электрических аппаратов необходимо тщательно изолировать одну от другой и от заземляющих конструкций. Однако с течением времени при эксплуатации электрооборудования диэлектрические характеристики изоляции изменяются. На старение изоляции влияют температура нагрева проводников и наружного воздуха, влажность помещения, коммутационные перенапряжения, возникающие в электрических цепях с индуктивными и емкостными элементами, продолжительность времени эксплуатации и т. д. Такая изоляция иногда не выдерживает даже номинальных напряжений, вследствие чего происходит электрический пробой.
Поэтому для того чтобы электрическое оборудование и аппараты не выходили из строя в связи с тем, что сопротивление их изоляции оказывается ниже допустимой нормы, а также чтобы в электрических сетях не происходило коротких замыканий из-за электрических пробоев изоляции, все ее виды проверяют и испытывают в определенные сроки в соответствии с "Правилами технической эксплуатации электрических станций и сетей".
Эти испытания проводятся, как правило, при текущих и капитальных ремонтах электрооборудования. Кроме того, проводятся межремонтные, т, е. профилактические испытания, которые позволяют выявить возникшие в процессе монтажа или эксплуатации оборудования или кабельных линий дефекты, что дает возможность своевременно устранить эти дефекты, предотвратить аварию или не допустить уменьшения выдачи электроэнергии потребителям.
Для каждого оборудования, аппаратов и сетей существуют нормы сопротивления изоляции, которые устанавливаются "Правилами устройств электроустановок".
Для определения состояния изоляции применяются два метода: измерение сопротивления данного участка электроустановки или аппарата с помощью мегаомметра или проверка состояния изоляции повышенным, строго нормированным напряжением.

Рис. 46. Мегаомметр:
а - общий вид, б - упрощенная схема: 1 - рамка, 2 - индуктор

При измерении сопротивления изоляции мегаомметром (рис. 46) стрелка его шкалы показывает сопротивление изоляции испытываемого аппарата или участка, цепи. Рамки 1 магнитоэлектрической системы питаются током от индуктора 2 , вращаемого рукой. Когда зажимы Х1 и Х2 разомкнуты, ток проходит только через рамку с добавочным резистором R2 и подвижная часть магнитоэлектрической системы устанавливается в одном из своих крайних положений со знаком , что обозначает бесконечно большое сопротивление. Если замкнуть зажимы Х1 и Х2 , ток пойдет через вторую рамку с добавочным резистором R1 . Подвижная система в этом случае установится в другом крайнем положении, отмеченном на шкале "0", т. е. измеряемое сопротивление будет равно нулю. При подсоединении измеряемого сопротивления Rx к зажимам Х1 и Х2 подвижная система установится в промежуточное положение между и 0 и стрелка на шкале будет указывать на значение этого сопротивления. Шкалу мегаомметра градуируют в килоомах и мегомах: 1 кОм = 1000 Ом; 1 МОм = 1000 кОм. В качестве источника постоянного тока в мегаоммеграх применяют индукторные генераторы постоянного тока с ручным приводом от рукоятки.
Напряжение на внешних зажимах генератора зависит от частоты вращения ручки. Для сглаживания колебаний во время вращения в привод вмонтирован центробежный регулятор.
Номинальная частота вращения генератора мегаомметра равна 2 об/с или 120 об/мин.
Для подключения мегаомметра используют соединительные провода ПВЛ с влагостойкой изоляцией, иначе показания мегаомметра могут быть существенно искажены.
Мегаомметры выпускаются с номинальным напряжением на зажимах: Ml 101M - 500 и 1000 В, МС-05 - 2500 В.
При измерении сопротивления изоляции длинных кабельных линий и обмоток электрических машин и трансформаторов показания мегаомметра в начале вращения рукоятки резко снижаются. Это объясняется наличием значительной емкости у кабельных линий и электромашин, по которым проходит ток заряда. Поэтому в таких случаях при использовании мегаомметра для измерения сопротивления изоляции засчитываются показания прибора только через 60 с. с момента начала вращения рукоятки.
Прикосновение к измеряемой цепи во время вращения рукоятки подсоединенного к цепи мегаомметра опасно и может привести к поражению током. Поэтому при измерениях принимают необходимые меры безопасности, исключающие возможность прикосновения людей к электрическим цепям.
В установках большой емкости (длинных кабельных линиях, трансформаторах большой мощности) измеряемая цепь может приобрести значительный электрический заряд. Поэтому после снятия напряжения от мегаомметра такие цепи разряжают с помощью гибкого медного провода на землю, используя изолирующую штангу для подсоединения к каждой его фазе. В установках напряжением выше 1000 В разрядку кабелей и крупных машин выполняют в диэлектрических перчатках и галошах.
Для испытания изоляции повышенным напряжением применяют различные аппараты выпрямленного и переменного тока.
Наиболее часто при испытании изоляции применяется кенотронная установка, принципиальная схема которой представлена на рис. 47, а. Она монтируется в кузове автомашины и имеет собственный источник электроэнергии. Положительный полюс кенотронной лампы (анод) заземляется, а отрицательный полюс (катод) соединяется с одной из фаз испытываемой электроустановки (например, кабеля), в то время как две другие фазы и оболочка заземлены (рис. 47, б).
Кенотронный испытатель изоляции КИИ-70 представляет собой установку, состоящую из передвижного пульта управления и кенотронной приставки. Он предназначен для испытания твердых жидких диэлектриков напряжением постоянного тока до 70 кВ. Изменение испытательного напряжения от 0 до 70 кВ производится с помощью регулятора с дополнительной обмоткой для питания цепи сигнальных ламп.
Кенотронная приставка состоит из трансформатора и кенотронa, размещенных в бакелитовом цилиндре, наполненном трансформаторным маслом. В верхней части приставки установлен трехпредельный микроамперметр со шкалой на 200, 1000 и 5000 мкА и переключателем пределов, предназначенным для измерения токов утечки. Приставка имеет выводы для присоединения цепей постоянного тока высшего напряжения и испытываемого объекта. Кроме того, аппарат снабжен прибором максимально-токовой защиты с двумя уставками: грубой и чувствительной.



Рис. 47. Схемы кенотронной установки:
а - принципиальная, б - испытания кабеля со свинцовой оболочкой; 1 - кенотронная лампа, 2 - трансформатор накала, 3 - выключатель накала, 4 - переключатель питания, 5 - рубильник питания, 6 - регулировочный трансформатор, 7 - контактор, 8 - испытательный трансформатор, 9 - жилы кабеля, 10 - оболочка кабеля

на стороне высшего напряжения испытателя, при этом она не срабатывает в режиме минутной мощности при напряжении 50 кВ.
Чувствительная уставка отключает аппарат при коротком замыкании на стороне высшего напряжения трансформатора. В этом случае защита не должна срабатывать при напряжении 70 кВ и вторичном токе 5 мА.
На крышке пульта управления испытателя размещены прибор максимально-токовой защиты, переключатель максимальной защиты, сигнальная лампа, киловольтметр.
Для испытания постоянным током кенотронную приставку устанавливают на откидной дверце пульта управления и к ней подключают испытываемый объект. На пульт управления с помощью регулятора подают напряжение, постепенно повышая его до испытательной величины. Напряжение контролируют по шкале прибора, отградуированного в киловольтах (максимальных). На последней минуте испытательного времени по микроамперметру измеряют ток утечки.
Испытание переменным током промышленной частоты производится путем присоединения испытываемого объекта к выводу переменного тока, после чего поднимают напряжение регулятором до испытательного. Контроль за напряжением осуществляется по шкале киловольтметра, отградуированной в киловольтах.
Напряжение при испытаниях плавно поднимают до испытательного и поддерживают неизменным в течение всего периода испытания. Время испытания определено "Правилами технической эксплуатации электроустановок потребителей и правилами техники безопасности при эксплуатации электроустановок потребителей" для каждого вида оборудования, аппаратов и сетей и колеблется от 1 до 10 мин.
Во время капитального ремонта распределительных устройств напряжением до 1 кВ, который проводится один раз в 3 года, сопротивление изоляции элементов приводов выключателей, разъединителей, вторичных цепей аппаратуры, силовых и осветительных проводок испытывают напряжением промышленной частоты 1 кВ в течение 1 мин или мегаомметром напряжением 1000 В. При измерении сопротивления изоляции в силовых цепях должны быть отключены электроприемники, аппараты и приборы, а в осветительных сетях - вывернуты лампы, отсоединены штепсельные розетки выключатели, групповые щитки от электроприемников.
Наименьшие допустимые значения сопротивления изоляции вторичных цепей управления, защиты, сигнализации релейно-контактных схем, силовых и осветительных электропроводок, распределительных устройств, щитов и токопроводов напряжением до 1000 В составляют 0,5 МОм, а шин оперативного тока и шин цепей напряжения на щите управления - 10 МОм.
Повышенным напряжением 1000 В в течение 1 мин испытывают вторичные цепи схем защиты, управления, сигнализации со всеми присоединенными аппаратами (катушки приводов, автоматов, магнитные пускатели, контакторы, реле и т. п.). Сопротивление изоляции аккумуляторной батареи после eё монтажа должно быть, не менее:

Измерение нагрузок и напряжения в контрольных точках сети освещения производится один раз в год; сопротивление изоляций переносных трансформаторов с вторичным напряжением 12 - 42 В испытывают один раз в 3 мес, а стационарных - один раз в год.
Выключатели, разъединители, заземляющие ножи, короткозамыкатели, отделители и их приводы испытывают не реже одного раза в 3 года одновременно с капитальным ремонтом. Наименьшие допустимые величины сопротивления опорной изоляции, измеренной мегаомметром на напряжение 2,5 кВ, при номинальном напряжении до 15 кВ составляют 1000 МОм и свыше 20 кВ - 5000 МОм. Испытание этой изоляции выключателей напряжением до 35 кВ повышенным напряжением промышленной частоты производят в течение 1 мин. Одновременно измеряется сопротивление контактов постоянному току, которое составляет для: ВМГ-133 (1000 А) - 75 мкОм; ВМП-10 (1000 А) - 40 мкОм; ВМП-10 (1500 А) - З0 мкОм; ВМП-10 (600 А) - 55 мкОм.
Сопротивление изоляции подвесных и многоэлементных изоляторов измеряется мегаомметром на напряжение 2,5 кВ только при положительных температурах окружающего воздуха, причем сопротивление изоляции каждого подвесного изолятора или элемента штыревого изолятора должно быть не менее 300 МОм.
Испытание повышенным напряжением промышленной частоты вновь установленных опорных многоэлементных и подвесных изоляторов проводится напряжением 50 кВ. Каждый элемент керамического изолятора подвергают испытанию в течение 1 мин, из органического материала - 5 мин. Опорные одноэлементные изоляторы внутренней и наружной установок испытывают повышенным напряжением, указанным в табл. 24, в течение 1 мин.

Т а б л и ц а 4. Испытательное напряжение опорных одноэлементных изоляторов, кВ

Штыревые изоляторы шинных мостов напряжением 6 - 10 кВ, опорные и подвесные фарфоровые тарельчатые изоляторы, а также контактные соединения шин и присоединений к аппаратуре при отсутствии термоиндикаторов испытывают один раз в 3 года. Испытание сопротивления изоляции вводов и проходных изоляторов производится мегаомметром на напряжении 1000 - 2500 В у вводов с бумажно-масляной изоляцией. Сопротивление изоляции должно быть не менее 1000 МОм. Изоляторы вводов и проходные напряжением до 35 кВ испытываются повышенным напряжением, величина которого указана в табл. 5.
Измерение сопротивления изоляции подвижных и направляющих частей, выполненных из органических материалов, масляных выключателей всех классов напряжений производится мегаомметром на напряжение 2500 В. Причем наименьшие допустимые сопротивления изоляции должны быть не менее: для напряжения до 10 кВ - 1000 МОм, от 15 до 150 кВ - 3000 МОм.

Таблица 5. Испытательное напряжение вводов и проходных изоляторов

Испытание изоляции масляных выключателей напряжением до 35 кВ повышенным напряжением промышленной частоты производится в течение 1 мин. Испытательное напряжение принимается в соответствии с данными табл. 6.
Таблица 6. Испытательное напряжение внешней изоляции масляных выключателей

Сопротивление постоянному току контактов масляных выключателей не должно отличаться от данных завода-изготовителя.
При испытаниях масляных выключателей проверке подлежат также его скоростные и временные характеристики. Эти измерения производятся для выключателей всех классов напряжения. Измеренные характеристики должны соответствовать данным завода-изготовителя.
После ремонта изоляцию обмоток силовых трансформаторов вместе с вводами подвергают испытаниям повышенным напряжением переменного тока промышленной частотой 50 Гц. Испытательное напряжение зависит от вида ремонта и объема работ (со сменой или без смены обмоток трансформатора).
Изоляцию каждой обмотки, электрически не связанной с другой, испытывают отдельно.
Значения испытательного напряжения при промышленной частоте тока 50 Гц указаны в табл. 7.
Таблица 7. Испытательное напряжение изоляции обмоток вместе с вводами, кВ

Результаты испытаний заносят в протокол. Эти данные необходимы для сопоставления полученных результатов с результатами предыдущих испытаний, проведенных в различное время до данного ремонта.
Испытания трансформаторов после ремонта выполняются по всей программе и в объеме, предусмотренном действующими правилами и нормами.
При профилактических испытаниях изоляция обмоток силовых трансформаторов испытывается повышенным напряжением промышленной частоты в соответствии с табл. 8 в течение 1 мин.
Таблица 8. Испытательные напряжения внутренней изоляции маслонаполненных трансформаторов

Сопротивление обмоток постоянному току измеряется на всех ответвлениях и может отличаться не более чем на 2% от данных завода-изготовителя.
Проверка коэффициента трансформации трансформатора производится на всех ступенях переключения. Допустимые отклонения могут составлять не более 2% от величин, полученных на том же ответвлении на других фазах, или от данных завода-изготовителя.
Минимальное пробивное напряжение масла, определяемое в стандартном сосуде перед заливкой в трансформаторы и изоляторы, на напряжение до 15 кВ должно быть 30 кВ, а от 15 до 35 кВ - 35 кВ.
Для свежего масла перед заливкой вновь вводимого в эксплуатацию трансформатора делают полный химический анализ по специальной программе.
Измерение сопротивления изоляции поводков и тяг, выполненных из органических материалов, производится мегаомметром на напряжение 2500 В. Наименьшее допустимое сопротивление изоляции из органических материалов при номинальном напряжении до 10 кВ должно быть 1000 МОм, при напряжении от 15 до 150 кВ - 3000 МОм.
Измерение сопротивления изоляции первичных обмоток измерительных трансформаторов производится мегаомметром на напряжение 2500 В, а вторичных обмоток - на 500 или 1000 В. Сопротивление изоляции первичной обмотки не нормируется, а сопротивление вторичной обмотки вместе с присоединенными к ней цепями должно быть не менее 1 МОм.
В зависимости от сопротивления изоляции первичных обмоток трансформаторов тока и напряжения до 35 кВ проверка производится при следующих значениях испытательного напряжения. Если сопротивление изоляции рассчитано на напряжение 6 кВ, испытательное напряжение принимают равным 28,8 кВ, на напряжение 10 кВ - 37,8 кВ, на напряжение 20 кВ - 58,5 кВ.
Продолжительность приложения испытательного напряжения для первичных обмоток измерительных трансформаторов - 1 мин. Только для трансформаторов тока с изоляцией из твердых керамических материалов или кабельных масс продолжительность приложения испытательного напряжения составляет 5 мин.
У сухих реакторов сопротивление изоляции обмоток относительно болтов крепления измеряется мегаомметром на напряжение 1000 - 2500 В. Его значение должно быть не менее 0,5 МОм.
Фарфоровая изоляция реактора, а также предохранителей выше 1000 В испытывается повышенным напряжением промышленной частоты в течение 1 мин следующими значениями испытательного напряжения: при номинальном напряжении 6 кВ - 32 кВ, при 10 кВ - 42 кВ, при 20 кВ - 65 кВ.
Сопротивление изоляции силовых кабельных линий измеряют мегаомметром на напряжение 2500 В. На рис. 48 приведена схема включения мегаомметра при измерении сопротивления кабеля. Для силовых кабельных линий напряжением до 1000 В сопротивление изоляции должно быть не менее 0,5 МОм, а при напряжении выше 1000 В сопротивление изоляции не нормируется. Измерения мегаомметром следует производить до и после испытания кабеля повышенным напряжением. Силовые кабели напряжением выше 1000 В испытываются повышенным напряжением выпрямленного тока.
Испытательные напряжения и длительность их приложения приведены в табл. 9.
Данные всех испытаний и измерений заносят в журнал испытаний электрооборудования и в протоколы испытаний и измерений.
Таблица 9. Испытательные напряжения выпрямленного тока для силовых кабелей



Рис. 48. Схема включения мегаомметра при измерении сопротивления кабеля

а - схема для измерения изоляции относительно земли, б - схема при наличии поверхностных токов утечки, в - измерение изоляции между жилами, 1 2 - кабель

Эти данные используются для сравнения при последующих испытаниях и измерениях. Они дают возможность проанализировать состояние и работоспособность оборудования, запланировать время проведения необходимого ремонта для увеличения сопротивления изоляции или уменьшения токов утечек и таким образом увеличить время эксплуатации оборудования в безаварийном режиме.

Электрооборудование регулярно подвергают испытаниям , которые преследуют цели проверки соответствия установленным техническим характеристикам, получения данных для проведения следующих профилактических испытаний, установления отсутствия дефектов, а также для изучения работы электрооборудования. Выделяют такие виды испытаний: эксплуатационные, приёмо-сдаточные, контрольные, типовые, специальные.

Типовые испытания применяются для нового оборудования, которое отличается от старых образцов обновлённой конструкцией, устройством. Этот вид испытаний проводит завод-изготовитель для того, чтобы проконтролировать соблюдение всех требований и стандартов, которые предъявляются к данному типу оборудования либо технических условий.

Для проверки соответствия выпускаемого изделия всем главным техническим требованиям каждое изделие подвергается контрольным испытаниям (аппарат, машина, прибор и т.п.). Для проведения контрольных испытаний, как правило, применяется сокращённая программа работ (по сравнению с типовыми).

Приёмо-сдаточные испытания применяют после окончания монтажа вновь вводимого в эксплуатацию оборудования для того, чтобы оценить пригодность его к эксплуатации.

Эксплуатационные испытания проводятся для оборудования, находящегося в эксплуатации, в том числе, вышедшего из ремонта. Этот вид испытаний служит для определения исправности оборудования. К эксплуатационным относятся испытания при текущих, капитальных ремонтах, а также профилактические испытания, не относящиеся к выводу оборудования в ремонт.

Для исследовательских целей или других по специальным программам могут проводиться специальные испытания.

Некоторая часть испытательных работ производится аналогично почти для всех элементов электрооборудования. К таким видам работ относятся: испытание и проверка изоляции , контроль схем электрических соединений.

При проверке схем электрических соединений проводятся следующие действия:

1) ознакомление с технической информацией по объекту - изучаются монтажные и принципиальные (полные) схемы коммутации, кабельный журнал;

2) проверка на соответствие проекту реальной аппаратуры и оборудования;

3) проверка и осмотр соответствия кабелей и проводов (сечение, материал, марка и т.д.) действующим правилам и проекту;

4) контроль правильности и наличия маркировки на жилах кабелей и проводах, выводах аппаратов, клеммниках;

5) контроль качества монтажа (прокладки кабелей, укладки кабелей на панелях, надёжности контактных соединений и т.п.);

6) прозвонка (контроль правильности монтажа цепей);

7) испытание надёжности электрических схем при подаче .

Наиболее полные испытания в цепях первичной и вторичной коммутаций проводят во время приёмосдаточных испытаний после завершения монтажа электрооборудования . Во время профилактических испытаний количество операций по контролю коммутации существенно уменьшается. Монтажники или наладчики должны устранять обнаруженные во время проверки отступления от проекта или ошибки монтажа. Для того, чтобы изменить или отступить от проекта, необходимо предварительно получить согласие проектной организации. Любые подобные изменения обязательно требуется предоставлять в виде чертежей.

Страница 3 из 19

ВИДЫ ИСПЫТАНИЙ ЭЛЕКТРООБОРУДОВАНИЯ

В процессе монтажа и после его окончания, а также в условиях эксплуатации электрооборудование электроустановок проходит проверку, испытания и наладку.
При транспортировке и монтаже электрооборудование может быть повреждено. Во время эксплуатации возможно его повреждение вследствие естественного износа, а также конструктивных дефектов.
К наладке электрооборудования предъявляют регламентированные требования, для соблюдения которых проводят следующие испытания:
типовые в соответствии с действующими ГОСТами;
приемосдаточные в соответствии с ПУЭ, а в отдельных случаях с указаниями Минэнерго;
профилактические и другие в соответствии с Правилами технической эксплуатации электрических станций и сетей (ПТЭ), объемом и нормами испытаний электрооборудования и инструкциями на отдельные элементы электрооборудования.
Типовые испытания проводят на заводах-изготовителях по программам и с объемами, указанными в стандартах и технических условиях, но частично их можно проводить на месте монтажа электроустановок. При типовых испытаниях проверяют соответствие электрооборудования тем требованиям, которые предъявляются к нему стандартами.
Приемосдаточные испытания проводят во вновь сооружаемых и реконструируемых установках до 500 кВ.
При испытаниях выявляют соответствие смонтированного оборудования проекту, снимают необходимые характеристики и выполняют определенный объем измерений. После рассмотрения результатов испытаний дают заключение о пригодности оборудования к эксплуатации.
Профилактические испытания проводят в процессе эксплуатации оборудования, что позволяет расширить возможности обнаружения дефектов с целью своевременного ремонта или замены оборудования.

ИЗМЕРЕНИЕ СОПРОТИВЛЕНИЙ И СОПРОТИВЛЕНИЯ ИЗОЛЯЦИИ

Измерение сопротивлений резисторов входит в объем почти всех видов пусконаладочных и эксплуатационных работ. При выполнении этих измерений выявляют целость токоведущих цепей электрических машин и аппаратов, обнаруживают обрывы катушек, параллельных ветвей, витковые замыкания, проверяют качество сварки, пайки и др.

Рис. I Схемы включения приборов для измерения методом амперметра и вольтметра сопротивлений:
а - малых, б - больших, в - очень малых, S - переключатель, GB - батарея, RK - реостат, РА - амперметр, Xi - Ха - зажимы
Для измерения сопротивлений постоянному току используют разнообразные приборы и следующие методы: амперметра - вольтметра, электрического моста, микроомметра.
Метод амперметра и вольтметра применяют во всех случаях, когда не требуется особенно большой точности измерения. Этим методом удобно пользоваться при измерении сопротивлений, находящихся в рабочем режиме. Точность измерения определяется суммой погрешностей амперметра и вольтметра. Для получения достаточно точных результатов необходимо использовать приборы класса точности 0,5 с погрешностью не более 0,5 %. Пределы измерений приборов выбирают так, чтобы отсчеты показаний производились во второй половине их шкалы. Обычно в таких случаях применяют многопредельные вольтметры с пределами измерения напряжения в цепях постоянного тока от 0,045 до 300 В и тока от 0,03 до 30 А. Метод основан на законе Ома, согласно которому измеряемое сопротивление какого-либо проводника R равно напряжению на его зажимах U, деленному на ток, проходящий через проводник /:R = z=U/l. Таким образом, если пропустить через сопротивление ток и измерить его и напряжение на зажимах сопротивления, можно определить значение сопротивления.
Возможны две схемы включения вольтметра и амперметра для измерения сопротивления, показанные на рис. 1, а, б. При измерении очень малых сопротивлений используют милливольтметр PV, который во избежание погрешности от сопротивления соединительных проводов и переходных контактов подключают к потенциальным зажимам измеряемого сопротивления Xi - /V3 (рис. 1, в).
Метод амперметра и вольтметра дает правильные результаты при соблюдении следующих условий:
количество разъемных контактов в схеме измерения должно быть наименьшим;
источником постоянного тока должна быть сеть или аккумуляторная батарея достаточной емкости напряжением 4-12 В;

Рис 2 Схема измерительного моста постоянного тока
отсчеты показаний по обоим приборам должны выполняться одновременно двумя лицами по команде одного из них;
сопротивление следует измерять при разных значениях тока;
при измерениях повышенной точности надо выбирать приборы класса не ниже 0,5.
Для измерения сопротивлений (10-8-10+16 Ом) постоянному току с высокой точностью служат электрические мосты.
Измерительный мост, показанный на рис.. 2, состоит из трех резисторов R1, R2, Rc, которые вместе с измеряемым сопротивлением резистора Rm образуют четырехугольник АБВГ. В его диагонали включены батареи GB и гальванометр Р (чувствительный магнитоэлектрический прибор).
На рис. 3, а, б показаны общий вид и схема реохордного моста ММВ. Мосты, у которых сопротивления в плечах выполнены в виде калиброванной манганиновой проволоки, называют реохордом. Реохорд разделяется скользящим по нему контактом D на два плеча. Для измерения сопротивления Rк резистора Rx достаточно знать отношение сопротивлений R1/R2, поэтому на шкале скользящего контакта нанесены не значения сопротивлений Ri и Rг, а значения их отношений при различных положениях движка На шкале переключателя сопротивлений в плече сравнения г3 нанесены значения сопротивлений от 0,1 до 1000 Ом.
Для определения неизвестного сопротивления Rгх его подключают к зажимам / и 2, устанавливая вначале в плече сравнения R3 предполагаемое значение неизвестного сопротивления. Затем нажимают на кнопку 5 (S) и вращают ручку реохорда 3 до тех пор, пока стрелка гальванометра не установится на нулевую отметку. Измеряемое, сопротивление равно произведению отсчетов по шкале реохорда 3 и рукоятке переключателя 4 диапазонов измерения.
Мост ММВ относится к индикаторам сопротивления и предназначен для технических измерений сопротивлений. Источником питания индикатора служит батарея 3336. При измерении сопротивлений меньше i Ом учитывают сопротивление соединительных проводников.
Для более точного измерения сопротивлений в практике наладочных работ широко применяют мосты постоянного тока Р 316, УМВ, РЗЗЗ.
Для измерения малых сопротивлений применяют микроомметр, который дает эффект при большом количестве измерений, например: переходных сопротивлений контактов ошиновки, масляных выключателей, сопротивлений между соседними парами коллекторных пластин электрических машин и другого электрооборудования.



Рис. 3. Малогабаритный мост- а- общий вид, б - схема
При наладочных работах используют микроомметры Ф415, Ф4104.
Сопротивление изоляции электрических цепей, машин и аппаратов - важнейший показатель состояния электроустановки.
Это сопротивление измеряют с помощью мегаомметра, учитывая, что его значение в значительной мере зависит от времени, через которое сделан отсчет. Поэтому за измеренное сопротивление изоляции принимают установившееся значение, которое наступает через 1 мин после приложения напряжения. Измерения должны производиться в соответствии с действующими правилами техники безопасности лицами с требуемой квалификационной группой.
При оценке состояния сопротивления изоляции пользуются методом абсорбции. При этом сравниваются показания мегаомметра, полученные через 15 и 60 с после приложения напряжения к изоляции. В качестве показателя для сравнения принимают отношение (коэффициент абсорбции)
Кза = R60/R15,
где R60 и R15 - сопротивления изоляции, отсчитанные через 60 и 15 с после приложения напряжения к изоляции.
Значение коэффициента абсорбции сравнивают с предыдущими измерениями. В процессе наладочных работ измерения этого коэффициента выполняют при положительной температуре (не ниже 10 °С). При 15-30 °С для неувлажненных обмоток он находится в пределах 1,3-2. Увлажненные обмотки имеют коэффициент абсорбции, близкий к единице.
Перед началом измерений во избежание погрешностей необходимо принять следующие меры: удалить пыль, очистить изоляторы, устранить сырость. Измерение производят мегаомметром на 1000 или 2500 В.
При выполнении наладочных работ широко применяют мегаомметры различных типов и напряжений (на 100, 500, 1000 и 2500 В). Схемы мегаомметров приведены на рис. 4. Мегаомметр М4100/1-4 (рис. 4, а) состоит из измерительного механизма Р со шкалой, проградуированной в омах или мегаомах, выпрямителя UD и генератора G постоянного или переменного тока с последующим выпрямлением, резисторов Rl - R4 и конденсаторов Cl, С2. Преобразование переменного тока в постоянный необходимо потому, что при испытаниях показания приборов зависели бы не только от измеряемого сопротивления изоляции, но и от емкостного сопротивления испытываемой цепи, особенно это относится к кабельным и воздушным линиям, имеющим большую емкость.



Рис. 4. Схемы мегомметров: а - М4100/1-4. 5 - М4100/ 5
Измерительный механизм изготовляют в виде двухрамочного магнитоэлектрического логометра. Измеряемое сопротивление включают между зажимами Л (линия) и 3 (земля) и вращают рукой рукоятку якоря генератора. Ток, генерируемый генератором, проходит по двум параллельным ветвям. Одна часть тока протекает от выпрямителя UD через сопротивления резисторов Rl, R2 и одну из обмоток измерительного механизма. Значение этого тока не зависит от значения измеряемого сопротивления. Другая часть тока протекает через вторую обмотку измерительного механизма, измеряемое сопротивление изоляции и сопротивления резисторов R3, R4. Следовательно, значение тока в этой обмотке зависит от значения измеряемого сопротивления. Таким образом, отклонение стрелки измерительного механизма зависит от соотношения токов в его обмотках. Поэтому при неизменном напряжении, развиваемом генератором, отклонение стрелки измерительного механизма зависит только от значения измеряемого сопротивления, что позволяет нанести на шкалу непосредственно Омы (или мегаомы и килоомы).
Якорь генератора достигает номинальной частоты при вращении рукоятки прибора с частотой 120 об/мин. На валу якоря помещен центробежный регулятор, обеспечивающий постоянство напряжения при увеличении частоты вращения якоря выше номинальной. На рис. 4, 6 показана электрическая схема мегаомметра М4100/5 на 2500 В, который по конструкции отличается от мегаомметра М4100/1-4 количеством конденсаторов и выпрямителем, собранным по схеме умножения напряжения.




Рис. 5. Схемы измерения сопротивления изоляции мегаомметрами: а - M4100/I-4 на пределе б - М4100/1 - 4 ка пределе «кй», в - М4 100/5 на пределе
«МЙ», г - М4100/5 на пределе «кй»
Для исключения влияний поверхностных токов утечки, которые могут исказить результаты измерения сопротивления изоляции, в схемах некоторых приборов предусмотрен специальный третий зажим Э (экран), который, присоединен непосредственно к выводу генератора (рис. 4,6). В этом случае токи по поверхности увлажненного изолятора отводятся в землю, минуя обмотки измерительного механизма. Линейный зажим Л защищен охранным изолирующим кольцом. Схемы измерения сопротивлений изоляции мегаомметрами М4100/1-5 приведены на рис. 5, а - г. При измерении на пределе kQ перемычку на одном из комплектных соединительных проводов подсоединяют к зажимам Л - 3, а измеряемое сопротивление - между зажимами 3 - /ей.
Технические характеристики мегаомметров М4100/1-5 приведены в табл. 1.
Перед измерениями необходимо убедиться в исправности мегаомметра. При вращении ручки генератора стрелка индикатора должна устанавливаться на отметку «с»» шкалы МОм, а при установке перемычки между выводами Л - 3 - на «0» этой же шкалы. В противном случае прибор считается неисправным.
Таблица I. Технические характеристики мегаомметров М 4100/1-5


Модифика
ция

Пределы
измерения

Рабочая часть шкалы

Номинальное
выходное
напряжение,
В

Основная погрешность, % от длины рабочей шкалы

Примечание. Технические показатели и схемы мегаомметров последних выпусков имеют незначительные изменения.
Запрещается приступать к измерениям, не убедившись в отсутствии напряжения па проверяемом объекте!

Рис. 6. Схема включения мегаомметра M4I00/5
В зависимости от измеряемого сопротивления подключение производят к соответствующим зажимам, например для мегаомметров М 4100/5 так, как показано на рис. 6.
Измерения мегаомметром осуществляют два человека: один вращает рукоятку генератора, другой касается частей цепи, подлежащих измерению. Отсчет производится после того, как стрелка займет устойчивое положение.
При измерении изоляции высоковольтного оборудования следует пользоваться мегаомметром на 2500 В, а при измерении низковольтного оборудования - на 100, 500 и 1000 В.
При проверке изоляции электрооборудования следят за тем, чтобы не подать повышенное напряжение на детали и элементы электроустановок с пониженным испытательным напряжением (конденсаторы, выпрямители, микросхемы и пр.).

Перед тем как ввести в эксплуатацию электроустановку или электрооборудование, необходимо провести контрольные испытания электроустановки, которые позволяют выявить возможные дефекты. Кроме выявления дефектов в ходе проверки контрольных испытаний, можно получить данные, которые необходимы для проведения профилактических проверок и для проверок соответствия установки или оборудования своим техническим характеристикам и нормам, прописанным в технических регламентах, утвержденных на законодательном уровне. Проводить контрольные испытания электроустановки должны специалисты электроизмерительной лаборатории, которая имеет свидетельство о регистрации в Ростехнадзоре.

Контрольные испытания электроустановки силами нашей электролаборатории.

Наша компания неоднократно проводила контрольные испытания электроустановки и имеет точное измерительное оборудование и использует в работе современные методики. Это позволяет нашим специалистам проводить контрольные испытания электроустановки качественно и быстро. При обнаружении нашей электроизмерительной лаборатории неисправностей и дефектов, мы помогаем контролировать процесс и качество их устранения.

Существуют определенные требования при проведении контрольных испытаний. Эти требования прописаны в ПУЭ и ПТЭЭП. Среди требований отдельно стоит поговорить об установленных сроках таких испытаний, так как существует обязанность организаций проводить контрольные испытания всего имеющегося электрооборудования через определенные промежутки времени. Например, электросетей, расположенных в особо опасных помещениях, осуществляется не реже 1 раза в год. Другие случаи предусматривают проведение таких испытаний 1 раз в 3 года. Лифтовое оборудование и краны подлежат проверке ежегодно. Электрические плиты подвергаются контрольным испытания только в нагретом состоянии и не реже, чем 1 раз в год. Для других электроустановок и электрооборудования проведение контрольных испытаний осуществляется в сроки, установленные техническим руководителем Потребителя. зависят от вида обследуемого оборудования.

Контрольные испытания электроустановки основа безопасности в работе.

Безопасность и надежность работы электроустановок и оборудования напрямую зависит не только от соблюдения технических требования и норм, но и от регулярной проверки. За счет существования жестких требований, которые предъявляют надзорные инстанции, обеспечивается максимально безопасное функционирование объекта. Для обеспечения защиты людей от поражения электрическим током, сохранности самого оборудования и обеспечения пожарной безопасности на самом объекте также регулярно должны проводиться контрольные испытания изолирующих материалов токоведущих элементов и узлов оборудования.



Статьи по теме