От чего зависит частота вращения электродвигателя. Регулирование скорости вращения асинхронных электродвигателей

Большинство насосов приводятся в действие с помощью асинхронных электродвигателей, это означает, что двигатели вносят вклад в общую эффективность насосной системы.

Данная статья посвящена исследованию ключевых аспектов эффективности электродвигателя, которые находятся под контролем пользователя. 2/3 всей вырабатываемой электроэнергии, потребляются электродвигателями, которые используются в различном оборудовании на промышленных площадках всего мира.

Электродвигатели развиваются на протяжении последних 150 лет. Не смотря на то, что существует большой выбор из различных конструкций двигателей (например синхронные, асинхронные или постоянного тока), наиболее используемым в промышленности на сегодняшний день является асинхронный электродвигатель переменного тока, т.к. является более надежным. Также асинхронный электродвигатель предпочтительнее при использовании частотного преобразователя. Достаточно высокая эффективность в сочетании с простотой изготовления, высокой надежностью и низкой ценой делает его самым широко-применяемым типом двигателя по всему миру.

Рисунок 1: Асинхронный электродвигатель с короткозамкнутым ротором

На рисунке 1 показана обычная компоновка асинхронного электродвигателя с тремя обмотками статора, которые расположены вокруг сердечника. Обмотка ротора состоит из медных или алюминиевых стержней, торцы которых накоротко замкнуты кольцами. Кольца изолированы от ротора. В подшипниковом узле, как правило, используются шарикоподшипники с консистентной смазкой, за исключением очень больших двигателей. Смазка масляным туманом может значительно увеличить срок службы подшипников. Во всех асинхронных электродвигателях используется трехфазный ток, за исключением самых маленьких промышленных процессов (ниже 2 л.с.). Для запуска фазных двигателей необходимы другие средства, такие как щетки или конденсаторный пуск (использование конденсатора во время пуска).

Проблема эффективности двигателя

При использовании электродвигателя в качестве привода насоса потери энергии и падение давления в результате неэффективности насоса обычно гораздо больше, чем потери энергии связанные с неэффективностью электродвигателя, но они не являются незначительными. Оптимизация эффективности электродвигателя насоса может обеспечить реальную экономию стоимости рабочего цикла на протяжении всего срока службы насоса/электродвигателя. Ключевыми факторами, которые влияют на эффективность асинхронного двигателя являются:

  • относительная нагрузка двигателя (негабаритные двигатели находящиеся под нагрузкой)
  • скорость вращения (число полюсов)
  • размер двигателя (номинальная мощность)
  • класс двигателя: обычный КПД в сравнении с энергоэффективностью в с равнении с высоким КПД
Эффективность электродвигателя при частичной загрузке

Как показано на рисунке 2, эффективность асинхронного электродвигателя изменяется вместе с
относительной нагрузкой на электродвигатель по сравнению с номинальной характеристикой. Вплоть до нагрузки в 50% эффективность большинства электродвигателей остается линейной и для некоторых электродвигателей достигает пика у отметки 75%. Электродвигатели могут работать при нагрузке меньше 50% только в течение короткого промежутка времени и не могут эксплуатироваться при нагрузках меньше 20% от номинальных. Таким образом, когда отрегулированные рабочие колеса или насосы возвращаются к своим кривым "напор-подача", необходимо оценить воздействие относительной нагрузки на электродвигатель.



Рисунок 2: Эффективность электродвигателя для 100-сильных моторов - Обычные кривые характеристик при нормальном диапазоне нагрузок электродвигателя

Скорость вращения

На рисунке 2 также показано влияние скорости вращения на максимально-достижимую эффективность. 4-х полюсный электродвигатель при номинальных 1800 об/мин выходит на самый высокий КДП, а 2-х полюсный при номинальных 3600 об/мин дает низкую эффективность. Таким образом, хотя насосы с номинальной частотой вращения 3600 об/мин могут быть более эффективными (и иметь низкую закупочную стоимость), чем насосы со скоростью вращения 1800 об/мин, электродвигатели последних могут быть более эффективными, плюс эти насосы, как правило, имеют более низкий NPSHR и энергию всасывания, не говоря уже о более длительном сроке службы. Также следует отметить, что номинальная мощность электродвигателя влияет на его эффективность, большие электродвигатели имеют большую эффективность, чем малые.

Скорость вращения асинхронного электродвигател я

Синхронная скорость вращения асинхронного электродвигателя рассчитывается по следующей формуле:
n = 120*f/p
где:
n = скорость вращения в об/мин
f = частота питающей сети (Гц)
p = количество полюсов (min = 2)

Для регулирования частоты вращения электродвигателя без использования внешних механических устройств необходимо регулировать напряжение и частоту подаваемого тока. Некоторые электродвигатели могут быть изготовлены с несколькими обмотками (количество полюсов) для достижения двух или более различных скоростей вращения.

Асинхронные электродвигатели вращаются со скоростью, которая меньше скорости вращения магнитного поля (на 1-3% при полной нагрузке). Разница между фактической и синхронной частотой вращения называется скольжением. Для новых более энергоэффективных электродвигателей скольжение имеет тенденцию уменьшаться в отличие от старых электродвигателей с обычным КПД. Это означает, что при заданной нагрузке энергоэффективные электродвигатели работают немного быстрее.



Рисунок 3. Эффективность при полной и частичной загрузке двигателя с низким и высоким КПД

Электродвигатели с высоким КПД

На рисунке 3 изображен пример возможного повышения эффективности, когда старый электродвигатель с обычной эффективностью заменяется новым, имеющим более высокий КПД. Как упоминалось ранее, электродвигатели с высоким КПД работают с меньшим скольжением, что дает некоторое увеличение скорости вращения, а следовательно напор насоса и производительность становятся несколько больше.

Однако, использование электродвигателей с высоким КПД в некоторых (с изменением подачи) процессах будет не оправданно, из-за большей скорости вращения (и напора насоса), до тех пор пока существующие электродвигатели по-прежнему слабо загружены (работающие с низким КПД). Т.к. входная мощность на валу насоса пропорциональна скорости в кубе, простая замена старого электродвигателя новым с высоким КПД не обязательно приведет к снижению потребления энергии.

С другой стороны, если немного большая подача и напор для насоса - это хорошо, замена старого
электродвигателя с обычным КПД на новый с высоким КПД может быть оправдана.

Коэффициент мощности электродвигателя

Другая проблема, которая входит в игру с характеристиками асинхронного электродвигателя (которая имеет косвенное влияние на энергопотребление) называется "Коэффициент Мощности ". Некоторые
коммунальные предприятия обязывают клиентов платить дополнительные сборы за низкие значения
коэффициентов мощности. Потери в сети происходят за счет того, что при меньшем коэффициенте
мощности требуется большее количество тока, что приводит к серьезным потерям энергии. Как и КПД,
коэффициент мощности электродвигателя также снижается с уменьшением нагрузки на него практически по линейному закону приблизительно до 50% нагрузки.

Определение коэффициента мощности:

Фазовый сдвиг (задержка) синусоидальной волны тока от синусоиды напряжения, который выбарабывает меньшее количество полезной мощности.
Сдвиг, вызванный необходимым током намагничивания двигателя
PF = Pi/KVA
Где:
KVA = VxIx(3) 0.5 /1,000

Нижняя формула показывает, как коэффициент мощности влияет на входную мощность трехфазного
электродвигателя (кВт). Обратите внимание, что чем ниже коэффициент мощности (больший сдвиг фазы ток-напряжение VA), тем меньше входная мощность при данном входном токе и напряжении.
Где:
Pi = VxIxPF(3) 0.5 /1,000

Pi = трехфазный вход кВт
V = среднеквадратичное напряжение (среднее от 3 фаз)
I = среднеквадратичное значение силы тока в амперах (берется от 3 фаз)
PF = коэффициент мощности в виде дроби

Хотя коэффициент мощности не влияет напрямую на КПД электродвигателя, он оказывает влияние на потери в сети, как это упоминалось выше. Однако, есть способы увеличения PF (коэффициента мощности), а именно:

  • покупка электродвигателей с изначально высоким PF
  • не покупайте слишком большие электродвигатели (коэффициент мощности падает вместе с уменьшением
  • нагрузки на электродвигатель)
  • установка компенсирующих конденсаторов параллельно с обмотками электродвигателя
  • увеличить полную загрузку коэффициента мощности до 95% (Max)
  • преобразование в привод с частотным регулированием
Пусковые конденсаторы электродвигателей являются одним из наиболее поппулярных способов увеличения коэффициента мощности и имеют следующий список преимуществ:
  • увеличение PF
  • меньшение реактивного тока от электрооборудования через кабели и пускатели электродвигателейменьшее тепловыделение и потери мощности кВт
  • По мере уменьшения нагрузки на электродвигатель растет возможность экономии, а PF
  • падает ниже 60%-70%. (возможная экономия 10%)
  • Уменьшение сборов за коэффициент мощности
  • Увеличение общей производительности системы
  • Интеллектуальная система управления электродвигателем
  • Частотно-регулируемый электропривод
Более высокое напряжение
Другим способом повышения КПД электродвигателя является повышение рабочего напряжения. Чем выше напряжение, тем ниже ток и, тем самым будут ниже потери в сети. Однако, высокое напряжение приведет к увеличению цены частотно-регулируемого привода и сделает работу более опасной.

Выводы
Таким образом, когда вы пытаетесь сократить энергопотребление насосных систем не забывайте о
КДП электродвигателя и факторах, перечисленных выше, которые на него влияют.

1. Способы регулирования асинхронного двигателя

2. Частотное регулирование асинхронных электроприводов

3. Регулирование скорости, тока и момента с помощью резисторов в цепях ротора и статора

4. Регулирование скорости АД изменением числа пар полюсов 1. Способы регулирования асинхронного двигателя

Асинхронный двигатель является наиболее массовым электрическим двигателем. Эти двигатели выпускаются мощностью от 0,1 кВт до нескольких тысяч киловатт и находят применение во всех отраслях хозяйства. Основным достоинством асинхронного двигателя является простота его конструкции и невысокая стоимость. Однако по принципу своего действия асинхронный двигатель в обычной схеме включения не допускает регулирования скорости его вращения. Особое внимание следует обратить на то, что во избежание значительных потерь энергии, а, следовательно, для короткозамкнутых асинхронных двигателей во избежание перегрева его ротора, двигатель должен работать в длительном режиме с минимальными значениями скольжения.

Рассмотрим возможные способы регулирования скорости асинхронных двигателей (см. рис.1). Скорость двигателя определяется двумя параметрами: скоростью вращения электромагнитного поля статора ω0 и скольжением s:


Рис.1. Классификация способов регулирования асинхронных двигателей

Исходя из (1) принципиально возможны два способа регулирования скорости: регулирование скорости вращения поля статора и регулирование скольжения при постоянной величине ω0.

Скорость вращения поля статора определяется двумя параметрами (см.3.3): частотой напряжения, подводимого к обмоткам статора f1, и числом пар полюсов двигателя рп. В соответствии с этим возможны два способа регулирования скорости: изменение частоты питающего напряжения посредством преобразователей частоты, включаемых в цепь статора двигателя (частотное регулирование), и путем изменения числа пар полюсов двигателя.

Регулирование скольжения двигателя при постоянной скорости вращения поля статора для короткозамкнутых асинхронных двигателей возможно путем изменения величины напряжения статора при постоянной частоте этого напряжения. Для асинхронных двигателей с фазным ротором, кроме того, возможны еще два способа: введение в цепь ротора добавочных сопротивлений (реостатное регулирование) и введение в цепь ротора добавочной регулируемой э.д.с. посредством преобразователей частоты, включаемых в цепь ротора (асинхронный вентильный каскад и двигатель двойного питания).

В настоящее время благодаря развитию силовой преобразовательной техники созданы и серийно выпускаются различные виды полупроводниковых преобразователей частоты, что определило опережающее развитие и широкое применение частотно-регулируемого асинхронного электропривода. Основными достоинствами этой системы регулируемого электропривода являются:

Плавность регулирования и высокая жесткость механических характеристик, что позволяет регулировать скорость в широком диапазоне;

Экономичность регулирования, определяемая тем, что двигатель работает с малыми величинами абсолютного скольжения, и потери в двигателе не превышают номинальных.

Недостатками частотного регулирования являются сложность и высокая стоимость (особенно для приводов большой мощности) преобразователей частоты и сложность реализации в большинстве схем режима рекуперативного торможения.

Подробно принципы и схемы частотного регулирования скорости асинхронного двигателя рассмотрены ниже.

Изменение скорости переключением числа пар полюсов асинхронного двигателя позволяет получать несколько (от 2 до 4) значений рабочих скоростей, т.е. плавное регулирование скорости и формирование переходных процессов при этом способе невозможно.

Поэтому данный способ имеет определенные области применения, но не может рассматриваться, как основа для построения систем регулируемого электропривода.

2. Частотное регулирование асинхронных электроприводов

Принципиальная возможность регулирования угловой скорости асинхронного двигателя изменением частоты питающего напряжения вытекает из формулы ω = 2πf1 (1 - s)/p. При регулировании частоты также возникает необходимость регулирования амплитуды напряжения источника, что следует из выражения U1 ≈ Е1 = kФf1. Если при неизменном напряжении изменять частоту, то поток будет изменяться обратно пропорционально частоте. Так, при уменьшении частоты поток возрастет, и это приведет к насыщению стали машины и как следствие к резкому увеличению тока и превышению температуры двигателя; при увеличении частоты поток будет уменьшаться и как следствие будет уменьшаться допустимый момент.

Для наилучшего использования асинхронного двигателя при регулировании угловой скорости изменением частоты необходимо регулировать напряжение одновременно в функции частоты и нагрузки, что реализуемо только в замкнутых системах электропривода. В разомкнутых системах напряжение регулируется лишь в функции частоты по некоторому закону, зависящему от вида нагрузки.

Частотное регулирование угловой скорости электроприводов переменного тока с двигателями с короткозамкнутым ротором находит все большее применение в различных отраслях техники. Например, в установках текстильной промышленности, где с помощью одного преобразователя частоты, питающего группу асинхронных двигателей, находящихся в одинаковых условиях, плавно и одновременно регулируются их угловые скорости. Примером другой установки с частотно-регулируемыми асинхронными двигателями с короткозамкнутым ротором могут служить транспортные рольганги в металлургической промышленности, некоторые конвейеры и др.

Частотное регулирование угловой скорости асинхронных двигателей широко применяется в индивидуальных установках, когда требуется получение весьма высоких угловых скоростей (для привода электрошпинделей в металлорежущих станках с частотой вращения до 20 000 об/мин).

Экономические выгоды частотного регулирования особенно существенны для приводов, работающих в повторно-кратковременном режиме, где имеет место частое изменение направления вращения с интенсивным торможением.

Для осуществления частотного регулирования угловой скорости находят применение преобразователи, на выходе которых по требуемому соотношению или независимо меняется как частота, так и амплитуда напряжения. Преобразователи частоты можно разделить на электромашинные и вентильные. В свою очередь электромашинные преобразователи могут быть выполнены с промежуточным звеном постоянного тока и непосредственной связью. В последних используют коллекторную машину переменного тока, на вход которой подают переменное напряжение с постоянной частотой и амплитудой, а на выходе ее получают напряжение с регулируемой частотой и амплитудой. Электромашинные преобразователи с непосредственной связью практического применения не получили.

3. Регулирование скорости, тока и момента с помощью резисторов в цепях ротора и статора

Вытекает, что регулирование скорости вращения асинхронных электро­двигателей можно осуществить:

изменением частоты питающего тока;

изменением числа «ар полюсов обмотки статора;

введением дополнительных сопротивлений в цепь обмотки ротора.

Первые два способа используются для регулирования скоро­сти вращения электродвигателей с короткозамкнутым ротором, а последний - электродвигателей с фазным ротором (с кон­тактными кольцами).

Регулирование скорости вращения изменением частоты пи­тающего тока используется очень редко, так как этот способ применим лишь в случае, когда электродвигатель питается от отдельного генератора. В этом случае для регулирования скоро­сти необходимо менять скорость вращения питающего генератора в такой же пропорции, е какой должна меняться скорость регулируемого электродвигателя. Бели же электродвигатель пи­тается от сети трехфазного тока, то осуществить регулирование его скорости изменением частоты невозможно. На практике ре­гулирование скорости изменением частоты применяется лишь в. гребных электрических установках переменного тока, в кото­рых мощные гребные электродвигатели получают питание от отдельных генераторов и поэтому частоту питающего тока мож­но регулировать произвольно.

Наиболее часто на практике применяется второй способ, позволяющий достаточно просто осуществлять ступенчатое ре­гулирование скорости вращения асинхронных электродвигателей с короткозамкнутым ротором. Если имеется возможность из­менять число пар полюсов обмотки статора [см. формулу (80) ] то, следовательно, имеется возможность ступенчатого регулиро­вания скорости вращения электродвигателя, так как число пар полюсов может быть равно 1, 2, 3 и т. д. Электродвигатели, до­пускающие переключение числа пар полюсов, должны иметь в пазах статора либо несколько независимых обмоток, либо од­ну обмотку со специальным переключающим устройством. Оте­чественная промышленность выпускает двух-, трех- и четырех- скороетные электродвигатели, используемые:в основном на морском транспорте и на некоторых кранах. Когда числа полю­сов значительно отличаются друг от друга, двух скор осиные электродвигатели изготовляются с двумя независимыми об­мотками. Одна, например, может быть выполнена на 2р = 2, а вторая на 2р = 8 полюсов. Тогда при подключении к сети пер­вой обмотки магнитное поле статора будет вращаться со скоростью n 1 = 60·50 / 1 = 3000 об /мин , а при подключении к сети второй обмотки - со скоростью n 1 = 60·50 / 4 = 750 об /мин . Соответствую­щим образом будет изменяться при этом и скорость вращения ротора n 2 = n 1 (1-s ).

Часто в пазы статора двухскоростного электродвигателя закладывают одну обмотку, но выполняют ее так, чтобы мож­но было включать ее при необходимости треугольником (рис. 49, а ) и двойной звездой (рис. 49, б ). При включении такой обмотки треугольником число полюсов равно 2р = 2а , а при вклю­чении двойной звездой 2р = а (где а - любое целое число), т. е. при переходе от треугольника к двойной звезде число пар по­люсов статорной обмотки уменьшается вдвое, а скорость элек­тродвигателя возрастает вдвое.

Регулирование переключением числа пар полюсов применя­ется только для электродвигателя с короткозамкнутым рото­ром, потому что у электродвигателей с фазным ротором одно

временно с переключением обмотки статора требуется переклю­чать и обмотку ротора, что усложняет конструкцию электродви­гателя и переключающего устройства. Данный способ регули­рования скорости отличается высокой экономичностью, но он не лишен и недостатков. В частности, регулирование скорости происходит не плавно, а скачками, требуется довольно сложное переключающее устройство, в особенности при числе скоростей большем двух; при переходе с одной скорости на другую раз­рывается цепь статора, при этом неизбежны толчки тока и мо­мента, коэффициент мощности при низших скоростях ниже, чем при высших из-за увеличения рассеяния магнитного потока.

Регулирование скорости введением дополнительных сопро­тивлений в цепь ротора возможно только у электродвигателей с фазным ротором. Согласно уравнению (97) , при введении раз­личных активных сопротивлений в цепь ротора жесткость ха­рактеристик изменяется (рис. 50), т. е. при одной и той же на­грузке скорость электродвигателя будет различной. Очевидно, чем выше величина дополнительного сопротивления, тем мягче искусственная характеристика и тем ниже скорость электродви­гателя.

Допустим электродвигатель работает с установившейся ско­ростью n 1 на естественной характеристике а в точке 1 , развития некоторый вращающий момент М 1 = М c . При введении в цепь ротора некоторого сопротивления R 1 электродвигатель перей­дет на работу по характеристике b , уравнение которой


Так как в момент включения сопротивления скорость электро­двигателя практически не изменится, переход с характеристи­ки а на характеристи­ку b произойдет по гори­зонтали 1 -2 , причем вра­щающий момент электро­двигателя снизится до М 2 , который меньше мо­мента сопротивления ме­ханизма М , поэтому ско­рость электродвигателя будет падать, а скольже­ние возрастать. При воз­растании скольжения мо­мент, согласно выраже­нию (92) , увеличивается до тех пор, пока момент электродвигателя вновь не станет равным момен­ту сопротивления ме­ханизма, после чего наступит равновесие моментов и двигатель будет вращаться с новой установившейся скоростью n 3 (точ­ка 3 ).

При необходимости дополнительно может быть включено сопротивление R 2 . Тогда скорость электродвигателя снизится до величины n 5 . При отключении сопротивлений скорость элект­родвигателя будет возрастать, при этом переход с одной харак­теристики на другую происходит в обратном порядке, как по­казано на рис. 50.

Последний способ позволяет получить широкий диапазон скоростей, но является крайне неэкономичным, так как при увеличении активного сопротивления цепи ротора растут потери энергии в электродвигателе, а значит уменьшается его к. п. д. Сами регулировочные реостаты, особенно для мощных электро­двигателей, получаются громоздкими и выделяют много тепла.

Необходимо также иметь в виду, что большинство электро­двигателей в настоящее время выполняется с самовентиляцией.

Вследствие этого при понижении скорости вращения охлаж­дение ухудшается и электродвигатель не может развивать но­минальный вращающий момент.

Основным преимуществом электродвигателей с параллель­ным возбуждением является возможность широкого и плавного регулирования их скорости вращения.

Уравнения, выведенные в особенностях электродвигателей постоянного тока , показывают, что искусствен­ная регулировка скорости вращения может производиться тремя способами: изменением сопротивления якорной цепи, изменением магнитного потока и изменением напряжения, под­водимого к якорю.

Регулирование скорости вращения изменением сопротивления якорной цепи. Для регулирования скорости вращения электро­двигателя в цепь якоря последовательно включают дополни­тельные сопротивления (см. рис. 10 ). Уравнение (30) показы­вает, что каждому новому значению дополнительного сопро­тивления соответствует своя искусственная механическая характеристика. То же самое относится и к скоростным харак­теристикам. Анализ этого уравнения показывает, что между сопротивлением якорной цепи и скоростью вращения сущест­вует линейная зависимость, т. е. при любом значении R ха­рактеристики электродвигателя остаются прямолинейными и при холостом ходе проходят через точку п = п 0 . Очевидно, чем вы­ше величина дополнительного сопротивления, тем мягче искус­ственная характеристика электродвигателя (рис. 12). Это означает, что при одной и той же нагрузке скорость электро­двигателя тем ниже, чем выше величина дополнительного сопротивления, включенного в якорную цепь. Уменьшение скорости объясняется дополнительным падением напряжения в добавочном сопротивлении.

Процесс перехода от одной скорости к другой происходит следующим образом. Допустим, электродвигатель, развивая мо­мент М = М с , работает устойчиво на естественной характеристике а в точке 1 (контакты 1У , 2У и 3У на рис. 10 замкнуты). Если необходимо снизить скорость вращения электродвигате­ля, размыкают контакт 1У и тем самым в цепь якоря вводят дополнительное сопротивле­ние R 1 . Согласно уравне­нию (30) электродвигатель должен перейти на характери­стику b , соответствующую но­вому значению сопротивления якорной цепи. Электродвига­тель обладает значительной инерцией и при переключении сопротивлений скорость его вращения мгновенно изменить­ся не может. Поэтому в первый момент электродвигатель пере­ходит на работу в соответству­ющей точке 2 на характеристи­ке b . При этом ток якоря и вращающий момент уменьша­ются, нарушается равновесие моментов (М <М c ) и скорость электродвигателя начинает сни­жаться до тех пор, пока снова не восстановится равновесие мо­ментов (М = М с ). Следовательно, устойчивая работа электро­двигателя будет теперь в точке 3 на характеристике b .

Аналогичным образом происходит переход на характери­стики с и d при включении сопротивлений R 2 и R 3 .

Для увеличения скорости вращения электродвигателя не­обходимо отключить часть дополнительного сопротивления. На­пример, если электродвигатель устойчиво работает в точке 7 на характеристике d , то при отключении сопротивления R 3 (при замыкании контактов 3У ) происходит переход на работу по характеристике с . При этом первоначально (в точке 8 ) рез­ко увеличивается ток и момент электродвигателя и скорость начинает возрастать. В точке 5 восстанавливается равновесие моментов и увеличение скорости прекращается. При последо­вательном отключении остальных ступеней регулировочного реостата происходит постепенное возрастание скорости враще­ния до величины n ­ 1 .

Данный способ регулирования скорости вращения отличает­ся простотой электрической схемы и применяется сравнитель­но часто для электродвигателей крановых механизмов. Однако ему присущи и некоторые существенные недостатки. В частно­сти, регулирование скорости рассмотренным способом сопро­вождается большими.потерями мощности в реостате. Поэтому стараются применять его лишь в тех случаях, когда мощность электродвигателя невелика или снижение скорости вращения должно быть кратковременным. Большим недостатком явля­ется также громоздкость и высокая стоимость регулировочно­го реостата, который должен быть рассчитан на номинальный ток электродвигателя. Это заставляет уменьшать число ступеней реостата и предусматривать специальные меры для его охлаж­дения.

Регулирование скорости вращения изменением магнитного потока. Если в цепь обмотки возбуждения включить последо­вательно реостат (см. рис. 10), то скорость вращения электро­двигателя с параллельным возбуждением можно регулировать изменением магнитного потока. Для этого необходимо изменять величину сопротивления цепи возбуждения. Изменение сопро­тивления приводит к изменению тока возбуждения и, следова­тельно, к изменению магнитного потока электродвигателя. Очевидно, при отсутствии дополнительного сопротивления в це­пи возбуждения магнитный поток электродвигателя имеет максимальное значение. Ему соответствуют естественные скоро­стная и механическая характеристики.

При введении же дополнительного сопротивления в цепь возбуждения магнитный поток уменьшается, а скорость уве­личивается, причем, различным значениям магнитного потока соответствуют различные искусственные скоростная и механиче­ская характеристики (рис. 13). Уравнения этих характеристик н.ичем не отличаются от уравнений (25) и (29) .

Из уравнений вытекает, что характеристики при различных значениях магнитного потока остаются прямолинейными, причем меньшим значениям магнитного потока соответству­ют большие значения скорости холостого хода. По мере сни­жения магнитного потока воз­буждения жесткость характери­стик электродвигателя несколь­ко уменьшается, что объясняет­ся влиянием реакции якоря.

Как было показано, в слу­чае регулирования скорости изменением сопротивления в цепи якоря переход с одной характеристики на другую осущест­вляется практически при постоянной скорости. Это объясняется малой индуктивностью якоря, благодаря чему ток якоря изме­няется практически мгновенно.

Обмотка же возбуждения электродвигателя.параллельного возбуждения обладает значительной индуктивностью. Поэтому в случае регулирования скорости изменением сопротивления цепи возбуждения переход с одной характеристики на другую осуществляется по так называемым динамическим ха­рактеристикам, которые могут быть построены в результате расчета переходных процессов. На рис. 13 динамические харак­теристики показаны пунктирной линией.


Регулирование скорости вращения электродвигателей с па­раллельным возбуждением изменением магнитного потока со­провождается незначительными потерями мощности в регули­ровочном реостате и является экономичным. Незначительные потери дают возможность использовать реостат небольших габаритов и веса, с большим числом регулировочных ступеней, что позволяет получить плавное, практически бесступенчатое регулирование скорости.

Недостатком данного способа регулирования скорости яв­ляется ухудшение коммутации и снижение перегрузочной спо­собности электродвигателя при повышенных скоростях. Скорость же при этом способе регулирования может изменяться только лишь в сторону увеличения по сравнению с номиналь­ной, что сильно ограничивает применение данного способа. При больших нагрузках данный способ регулирования скорости вообще неприменим, так как снижение магнитного потока уменьшает вращающий момент и при переходе к высшей ско­рости может возникнуть недопустимо большой ток.

Регулирование скорости вращения изменением напряжения на зажимах якоря (система генератор-двигатель). В целях ши­рокого и плавного регулирования скорости иногда применяют так называемую систему генератор-двигатель (сокращенно система Г-Д), которая позволяет использовать метод регули­рования скорости изменением напряжения, подводимого к якорю электродвигателя. При питании электродвигателя от сети такой метод совершенно неприменим. Его применение воз­можно лишь при питании электродвигателя от отдельного генератора.


Обычно система Г-Д состоит из приводного двигателя ПД , генератора Г с возбудителем В и исполнительного электродви­гателя ИД (рис. 14). Приводной электродвигатель питается от сети и служит для приведения во вращение генератора. Чаще всего в качестве приводного электродвигателя используется асинхронный короткозамкнутый электродвигатель, получающий питание от сети трехфазного тока. Он имеет постоянное на­правление вращения и вращается с постоянной скоростью. Ис­полнительный электродвигатель получает питание от генера­тора Г и приводит в действие механизм.

Генератор и исполнительный электродвигатель имеют неза­висимое возбуждение. Их обмотки возбуждения ОВГ и ОВД питаются от возбудителя В , небольшого генератора постоянно­го тока, сидящего на одном валу с приводным электродвигате­лем ПД и генератором Г . Если в цепь обмотки ОВГ включить регулировочный реостат, то, изменяя величину его сопротивле­ния, можно изменять скорость вращения исполнительного элек­тродвигателя, так как при этом будет меняться величина на­пряжения генератора. Действительно, для цепи генератор-двигатель по II закону Кирхгофа можно составить следующее уравнение:

где Е г и Е д - соответственно э.д.с. генератора и электродвига­теля;

R г и R д - соответственно сопротивление якорей генератора

И электродвигателя. Заменив э. д. с. электродвигателя, согласно выражению (7) ,. получим

Выражение (41) является уравнением скоростной характери­стики исполнительного электродвигателя в системе Г-Д. За­менив в нем ток якоря выражением (28) , получим уравнение механической характеристики

Уравнения (41) и (42) показывают, что путем изменения Е г можно изменять скорость вращения исполнительного элект­родвигателя. Следовательно, при уменьшении сопротивления регулировочного реостата R p скорость исполнительного элект­родвигателя будет возрастать, а при увеличении сопротивле­ния-уменьшаться, так как э. д. с. генератора Е г зависит от величины тока в обмотке ОВГ .

Нетрудно заметить, что механические и скоростные харак­теристики электродвигателя в системе Г-Д представляют со­бой прямые линии. Скорость холостого хода определяется пер­вым членом правой части урав­нения (41) или (42) и не остает­ся постоянной величиной при различных значениях сопротив­ления R р , т. е. каждому значе­нию сопротивления R р соответст­вует своя скоростная и механи­ческая характеристики (рис. 15). Эти характеристики являются достаточно жесткими, что позво­ляет при применении специаль­ных регулируемых электродвига­телей получить широкий диапа­зон скоростей в пределах 1: 100 и более, что является одним из основных положительных качеств системы Г-Д.


Иногда регулировочный реостат включают не только в цепь обмотки ОВГ , но в цепь обмотки возбуждения ИД , что дает воз­можность регулировать скорость вверх от номинальной.

Регулирование скорости по системе Г-Д является весьма экономичным, так как все переключения происходят в цепях обмоток возбуждения, где токи сравнительно невелики. Отно­сительно небольшие мощности и габариты регулировочных реостатов позволяют получить большое число регулировочных ступеней и, следовательно, достаточно плавное регулирование скорости. Возможно также применение реостатов со скользя­щими контактами, что позволяет получить бесступенчатое ре­гулирование скорости.

Система Г-Д очень удобна не только в отношении широты и плавности регулирования скорости. Она позволяет также очень просто производить реверс и торможение исполнительно­го электродвигателя. Так, для осуществления реверса необхо­димо, как известно, изменить полярность на зажимах якоря электродвигателя. Для этого достаточно изменить направление тока в обмотке ОВГ (или в обмотке ОВД ). Для осуществления торможения достаточно отключить от возбудителя обмот­ку ОВГ . Небольшие размеры регулировочных реостатов позво­ляют широко использовать дистанционное управление систе­мой Г-Д, что также является большим ее преимуществом.

Основной недостаток системы генератор-двигатель - большое количество электрических машин, высокая стоимость и относительно низкий к. п. д. установки, что, естественно, ограничивает область применения дайной системы.



Статьи по теме